首页/文章/ 详情

什么是PCB走线宽度?怎么计算PCB走线宽度?

1小时前浏览37
今天给大家分享的是:PCB走线宽度、PCB走线宽度计算、PCB走线宽度和电流。


一、什么是PCB走线宽度?


走线宽度是PCB设计中最关键的因素之一。

只有经常做电路设计的人都会知道,经常会遇到走线宽度的问题。一些刚开始没有什么经验的设计人员比较倾向于使用PCB Layou软件中给出的默认走线宽度。

对于有经验的人来说,默认走线宽度有一定的参考价值,但可能会根据一些经验来判断对于某些轨道来说太窄了,尤其是对于电源和接地连接。



二、什么是走线?


PCB 走线是放置在非导电或隔离基材上的细导电铜线,用于将信号和电源传输到整个电路。铜走线具有特定的宽度,我们称之为走线宽度,并且具有特定的高度或厚度。

通常,铜层的PCB厚度是固定的,由 PCB 制造公司的规格决定。对于典型的 PCB,最常见的铜厚度为 35µm,相当于 1oz/sqr ft。

所以在设计中,我们只能控制走线的宽度。对于大多数制造商,最小走线宽度为6mil 或 0.152mm,主要是因为蚀刻工艺和目标产量有限制,

但是为了有一定的公差,通常使用 0.254-0.3 毫米的走线。


走线宽度


三、哪些因素对走线宽度至关重要?


1、信号走线

信号走线是那些传送一些数据的走线。在数字或模拟信号中,具有不同的走线宽度通常不会对简单的PCB 设计产生太大影响,但在射频/模拟和高速数字设计中至关重要。在此类设计中,走线阻抗是一个重要的考虑因素,因为走线宽度和阻抗呈反比关系。



2、电源走线

另一方面,电源走线需要更多关注,因为这些走线负责为电路中的每个组件供电。在 PCB 设计中使用不同走线宽度有两个原因。

1)电流承载能力

电流承载能力是第一个也是最明显的原因。为什么?导体宽度与载流能力之间的关系很简单。走线的横截面积和允许的温升决定了走线可以承载多少电流。走线的横截面也与铜厚度和走线宽度成正比。

电流承载能力

当我们增加通过任何给定走线的电流时,温度也会升高。走线需要应对温度升高。确保这一点的一种简单方法是增加该走线的宽度。


IPC-2152 标准是确定迹线宽度的起点,这些标准使用经验数据来生成用于计算给定温升的电流限制的表格。使用 PCB 走线宽度与当前表格非常适合评估PCB 走线宽度/横截面积。

通过下表,可以有效地确定迹线中允许电流的上限。对于 PCB 叠层中的无限变量,你需要使用仿真来分析 PCB,以准确测量电流密度和温升。但是对于大多数典型的电路板来说,IPC 表就足够了。

下图显示了几种走线宽度和相应的电流值,这些值将在 1 盎司/平方英尺的铜重量下将温度上升限制在 10 °C。


一些在线工具可以计算承载额定电流所需的走线宽度,同时将走线温度保持在指定限值以下。实际结果可能因应用和条件而异。

2)走线阻抗

高速电路可能需要特定的间距和阻抗,以最大限度地减少串扰、耦合和反射。必须计算敏感数据线,例如 RF/模拟迹线和高速迹线。对于 GHz 频段等高频信号,PCB 走线不像简单的连接那样起作用。

走线阻抗


每条铜走线都有一定的串联电感和内阻,对于简单的低速设计来说很容易被忽略。但在高速设计中,走线电感和铜表面粗糙度以及集肤效应会增加,并可能影响电路板的性能。此外,每条信号走线在其返回路径和附近的其他走线之间都有一些电容值。

3、直线宽度和信号反射

信号反射是高性能电子电路设计中的一个基本问题。传输信号的某些部分向源反射的现象称为信号反射,信号反射会导致信号失真和振荡。

PCB 中的信号反射在很大程度上取决于走线的形状和路线。每当走线改变方向、形状或与组件的接口时,走线不连续性就会发挥作用。例如,当走线弯曲 90 °时,走线宽度会发生显著变化。

在弯曲点,走线宽度是实际走线宽度的1.414倍。迹线宽度的这种变化会导致阻抗发生变化,从而导致信号反射。专业的 PCB 设计师都知道这些问题,因此会避免急剧弯曲和不均匀的走线宽度。


如果置之不理,这些因素会显着降低系统的整体性能,因为信号路径中不同点的阻抗会有所不同。走线耦合,尤其是当信号跨平面分裂和空隙时,会导致串扰。

使用走线宽度计算器,可以知道如何推导出走线宽度。但需要考虑许多因素,例如:

  • 走线载流能力

  • 迹线将连接的组件焊盘的间距和尺寸。

  • 痕迹之间的差距

除了走线宽度外,还必须考虑走线之间的间距,将防止短路并在原子之间留出最大空间以实现正常功能。

PCB 通常很小,因为它与生产成本有关。但是,如果电路板太小,可能会发现难以布置走线并在它们之间保持适当的间距。

走线宽度


四、怎么计算PCB走线宽度?


1、使用PCB走线宽度计算器

你可以使用走线宽度计算器根据安培容量确定走线宽度。但需要在走线宽度计算器中提供设计规范,包括流过走线的最大电流(以安培为单位)、路径的总长度、由于走线电阻引起的温度升高等。

提供规格后,将自动生成走线的计算宽度,通常都是所需的最小宽度。可以允许电流安全通过而不会导致PCB损坏。

你可能会发现内层的走线宽度比外层更宽,因为它们容易产生更多热量。由于对流,外层不会得到那么多的热量。

出于安全原因,建议使用整个 PCB 的内部走线宽度。

2、使用方程式

1)PCB走线宽度表

PCB 走线宽度表可以帮助你确定 PCB 的走线宽度,还可以让你了解载流能力和温升的影响,可以参考下表。

PCB走线宽度表


2)PCB走线宽度公式

根据 IPC 2221 的定义,你可以使用计算通过走线的允许电流的公式找到 PCB 的走线宽度。过程如下

I=k*ΔT^0.44*A^0.725

  •  I 代表电流,取为常数

  • ΔT是指温度的变化

  • A是走线的截面积。

现在可以重新排列公式,通过找出所选货币安全通过的横截面积来导出迹线宽度。

面积[密耳^2] = (电流[安培]/(k*(温度上升[摄氏度])^ 0.44))^(1/0.725)

k = 0.048

然后,考虑走线的厚度才能找出所需的宽度。

宽度[mils] = 面积[mils^2]/(厚度[oz]*1.378[mils/oz])

该公式可用于 0 到 35 A的电流,允许温度从 10 ℃上升到 100 ℃。它可容纳 400 密耳的迹线宽度,你可以使用 0.5 至 3 盎司的铜值。

通过将 2 A插入上述计算中,我们得到至少约 30 密耳的走线。但是不能计算出电压降,因为需要计算走线的电路。下面就讲讲走线电路怎么计算。


五、怎么计算PCB 走线电路?

包含敏感元件(例如无线芯片或天线)的电路可能需要一些额外的保护以免受外部噪声的影响。你可以通过在走线之间嵌入接地过孔来最大限度地减少对额外保护的需求,这可以显着减少耦合、被附近的走线或平面拾取以及潜入板边缘的板外信号。

PCB 上铜走线的尺寸和形状直接影响电路板的尺寸、成本和性能。在这种情况下,PCB 走线宽度非常重要。由于更高的电流要求,用于传输功率信号的走线需要更宽。PCB走线宽度与走线阻抗成反比。以下等式计算迹线阻抗:


  • ρ = 铜的电阻率 | α = 铜的温度系数 | T = 迹线厚度

  • W = 走线宽度 | L = 迹线长度 | t = 温度

除了走线宽度外,走线的形状也会影响信号反射。不对称的走线尺寸和急转弯会引起信号反射,从而导致信号失真。在多层 PCB 中,电源信号走线通常放置在表层以改善散热。另一方面,数据信号走线放置在内部层上以防止 EMI 和环境噪声。

3、实际案例-直流电机电源路径的优化走线宽度示例

下面这个例子为将电流从一个电源组件传输到外围设备的电源信号计算特定走线宽度的过程。主要是计算用于直流电机的电源路径的最小走线宽度。

电源路径从保险丝开始,穿过 H 桥(用于管理直流电机绕组中的电力输送的组件),并在电机的连接器处结束。直流电机所需的平均连续最大电流约为 2 安培。

现在,PCB 走线充当电阻,走线越长越窄,增加的电阻就越大。如果走线没有正确定义,大电流可能会损坏走线和/或给电机带来明显的电压降(导致速度变慢)。图 3 所示的 NetC21_2 长约 0.8 英寸,最大需要承载 2 A。如果我们假设一些一般情况,例如在正常操作期间的 1 盎司覆铜和环境室温,我们就需要计算最小走线宽度和该宽度下的预期电压降。

直流电机电源路径的优化走线宽度示例


六、PCB走线宽度在布局中的作用


PCB 走线宽度会影响印刷电路板的电气性能,包括:

  • 信号完整性

  • 电源完整性

1、信号完整性

使用不同的走线宽度可以大大提高信号完整性并控制信号干扰、串扰、电磁干扰等。

2、受控阻抗布线

当涉及到某些高速信号时,它们需要以特定的宽度进行布线,以便进行阻抗控制。必须根据以下因素正确计算走线宽度:

  • 电路板的介电材料。

  • 与其他信号的间距。

  • 铜重。

3、微带线和带状线

如果是敏感的高速传输线,需要与参考地平面耦合,以便屏蔽走线。带状线配置是指夹在两个地平面之间的内部布线层。另一方面,微带配置是指电路板外部的走线及其下方的相邻平面。

4、模拟路由

对于模拟信号,它们需要短而直接,同时具有额外的宽度以保持低走线阻抗。对于模拟电路,最好尽量减少过孔的使用。

5、电源完整性

1)短而直接的路由

保持走线短以避免额外的噪声很重要。与直角相反的圆角也是优选的。

2)使用宽痕迹

为减少电感和串扰,明智的做法是使用带电源布线的宽走线。

3)电流和热考虑

电源走线根据正在布线的网络传导不同的电流水平。此外,重要的是要考虑线路随电流产生的热量。外层的电源跟踪也可以从空气冷却中获益。

案例1-布线高速 USB 线

对于具有高速通信的数字设计,可能需要特定的间距和调谐长度,以最大限度地减少串扰、耦合和反射。一些常见的应用是基于 USB 的串行差分信号和基于 RAM 的并行差分信号。通常,USB 2.0 需要 480Mbit/s(USB 高速级)或更高速度的差分对路由。这部分是因为高速 USB 通常在低得多的电压和差分下运行,从而使整体信号电平更接近本底噪声。

布线高速 USB 线时需要考虑三个重要事项:走线宽度、走线间距和走线 长度。

所有这些都很重要,但三者中最关键的是确保两条迹线的长度尽可能匹配。作为一般经验法则,如果迹线之间的长度相差超过 50 密耳(对于高速 USB),则会显着增加可能导致通信不良的反射风险。90 Ω 匹配阻抗是差分对布线的常见规格,为了实现这一点,应优化走线的宽度和间距。

下图显示了一个为高速 USB 接口布线的差分对示例,其中包含 15 mil 间距的 12 mil 宽走线。

USB2.0 高速差分路由


包含并行接口的基于内存的组件的接口,例如 DDR3-SDRAM,在走线长度方面将受到更严格的限制。大多数高端PCB 设计软件都具有长度调整功能,可优化走线长度以匹配并行总线中的所有相关信号。下图显示了带有长度调整走线的 DDR3 布局示例。

长度调整的 DDR3 内存走线示例


案例2-在接地线和平面中

某些具有对噪声敏感的组件(例如无线芯片或天线)的应用可能需要一些额外的保护。设计带有嵌入式接地过孔的走线和平面可以极大地帮助最大限度地减少附近走线或平面拾取的耦合以及潜入电路板边缘的板外信号。

下图显示了一个靠近电路板边缘放置的蓝牙模块示例,其天线(通过丝印“ANT”标记)位于包含连接到接地层的嵌入式通孔的粗迹线外部。这有助于将天线与其他板载电路和平面隔离。

带有接地通孔嵌入式走线以帮助抑制噪声的蓝牙模块


这种接地通孔嵌入式走线(或本例中的多边形平面)的另一种方法可用于保护电路板电路免受外部、板外无线信号的影响。

下图显示了一个对噪声敏感的 PCB,在电路板的周边有一个接地通孔嵌入式平面。

敏感 PCB 上带有过孔的接地层,以防止板外干扰


七、各种走线宽度与厚度


PCB 包含各种走线宽度是很常见的,因为它们取决于信号的需求(如图下所示)。所示的较细迹线用于通用 TTL(晶体管-晶体管逻辑)电平信号,对高电流或噪声保护没有特殊要求。

这些将是电路板上最常见的走线类型。

包含不同走线宽度和类型的 4 层板示例


较粗的走线已针对载流能力进行了优化,并用于需要更高功率的外围设备或与电源相关的功能,例如风扇、电机和向较低级别组件的一般功率传输。图中左上角甚至还显示了一个差分信号(USB 高速),其中定义了特定的间距和宽度,以满足 90 Ω的阻抗要求。下图显示了一个稍微密集的 6 层电路板和一个需要更细走线的 BGA(球栅阵列)组件。

包含 256 引脚 BGA 组件的 6 层板示例,走线宽度为 5 mil


八、PCB制造中直线宽度规范


作为一般规则,以下与走线相关的规范开始推高裸 PCB 制造成本。由于更严格的PCB 公差和制造、检查或测试 PCB所需的高端设备,成本变得相当高:

  • 走线宽度小于 5 mils (0.005”)

  • 走线间距小于 5 密耳

  • 直径小于 8 密耳的通孔

  • 迹线厚度薄于或厚于 1 盎司(相当于 1.4 密耳)

  • 差分对和受控长度或走线阻抗

包含 PCB 占位面积的高密度设计(例如极细间距 BGA 或高信号数并行总线)可能需要薄至 2.5 密耳的走线宽度和特殊类型的通孔,例如直径为 6 密耳或更小的激光钻孔微通孔。相比之下,一些高功率设计可能需要非常大的走线或平面,消耗整层,并且比标准更厚的盎司倾倒量。空间受限的应用可能需要包含几层的非常薄的电路板和半盎司(0.7 密耳厚度)的有限铜浇注厚度。

在其他一些情况下,从一个外围设备到另一个外围设备的高速通信设计可能需要具有受控阻抗以及特定宽度和彼此间距的迹线,以最大限度地减少反射和感应耦合。或者设计可能需要一定的长度以匹配总线中的其他相关信号。高压应用需要某些安全特性,例如两个暴露的差分信号之间的距离最小化,以防止产生电弧。

声明:


   
声明:本文转自头条百芯EMA。本号对所有原创、转载文章的陈述与观点均保持中立,推送文章仅供读者学习和交流。文章、图片等版权归原作者享有,如有侵权,联系删除。  

来源:硬件笔记本
电源电路信号完整性通用电力电子电源完整性芯片通信电机材料控制
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2025-11-18
最近编辑:1小时前
硬件笔记本
本科 一点一滴,厚积薄发。
获赞 156粉丝 45文章 585课程 0
点赞
收藏
作者推荐

TVS过压保护电路

过压保护电路的作用是:若开关电源内部稳压环路出现故障或者由于用户操作不当引起输出电压超过设计阈值时,为保护后级用电设备防止损坏,将输出电压限定在安全值范围内。本篇博文将从省钱省心的TVS管和可靠高效电路设计两个方法介绍如何快速设计过压保护电路。1、省钱省心TVS管TVS(Transient Voltage Suppressors),即瞬态电压抑制器,也被称为雪崩击穿二极管,是一种二极管形式的高效能保护器件。1.1、TVS管特性TVS管有单向与双向之分,单向TVS管一般应用于直流供电电路,双向TVS管应用于电压交变的电路。例如,单向TVS管应用于直流电路时,如下图所示。当电路正常工作时,TVS 处于截止状态(高阻态),不影响电路正常工作。当电路出现异常过电压并达到TVS(雪崩)击穿电压时,TVS 迅速由高电阻状态突变为低电阻状态,泄放由异常过电压导致的瞬时过电流到地,同时把异常过电压钳制在较低的水平,从而保护后级电路免遭异常过电压的损坏。当异常过电压消失后,TVS 阻值又恢复为高阻态。TVS工作原理选用TVS管有以下几点重要参数:选用TVS管关键指标(1) Vrwm截止电压TVS 的最高工作电压,可连续施加而不引起TVS劣化或损坏的最高工作峰值电压或直流峰值电压。对于交流电压,用最高工作电压有效值表示,在 Vrwm下,TVS 认为是不工作的,即是不导通的。电路设计时最高工作电压必须小于Vrwm,否则将会导致TVS动作导致电路异常。(2) IR漏电流漏电流,也称待机电流。在规定温度和最高工作电压条件下,流过 TVS 的最大电流。TVS的漏电流一般是在截止电压下测量,对于某一型号 TVS, IR 应在规定值范围内。对 TVS两端施加电压值为Vrwm,从电流表中读出的电流值即为TVS的漏电流IR 。对于同功率和同电压的 TVS,在Vrwm≤10V 时,双向TVS 漏电流是单向 TVS 漏电流的 2 倍。对于一些模拟端口,漏电流会影响AD的采样值,所以TVS的漏电流越小越好。(3) VBR击穿电压击穿电压,指在 V-I 特性曲线上,在规定的脉冲直流电流It或接近发生雪崩的电流条件下测得 TVS 两端的电压。测试的电流It一般选取10mA左右,施加的电流的时间不应超过400ms,以免损坏器件,VBR MIN 和 VBR MAX 是 TVS 击穿电压的一个偏差,一般 TVS 为±5%的偏差。测量时,VBR 落在VBR MIN和VBR MAX之间视为合格品。(4) IPP峰值脉冲电流 ,VC钳位电压峰值脉冲电流,给定脉冲电流波形的峰值。TVS一般选用 10/1000μs 电流波形。钳位电压,施加规定波形的峰值脉冲电流 I PP 时,TVS 两端测得的峰值电压。IPP及VC是衡量 TVS 在电路保护中抵抗浪涌脉冲电流及限制电压能力的参数,这两个参数是相互联系的。对于 TVS 在防雷保护电路中的钳位特性,可以参考VC这个参数。对于相同型号TVS,IPP越大,耐脉冲电流冲击能力越强,若在IPP相同下的VC越小,说明TVS的钳位特性越好。(5) 结电容Cj结电容是TVS中的寄生电容,在高速IO端口保护需要重点关注,过大的结电容可能会影响信号的质量。1.2、TVS管选型选用TVS管,有三个要点需要注意:电压合适能保护后级电路;引入的TVS的结电容不能影响电路;TVS功率余量充足,满足测试标准,且不能比保险管先挂。选型的过程可以按照以下的思路步骤进行:选择TVS最高工作电压Vrmw;选择TVS钳位电压VC;选择TVS的功率;评估漏电流Ir的影响;评估结电容的影响。具体说明如下所示:(1) 选择TVS最高工作电压Vrmw在电路正常工作情况下,TVS应该是不工作的,即处于截止状态,所以 TVS 的截止电压应大于被保护电路的最高工作电压。这样才能保证 TVS 在电路正常工作下不会影响电路工作。但是 TVS 的工作电压高低也决定了 TVS 钳位电压的高低,在截止电压大于线路正常工作电压的情况下,TVS 工作电压也不能选取的过高,如果太高,钳位电压也会较高,所以在选择 Vrwm 时,要综合考虑被保护电路的工作电压及后级电路的承受能力。要求Vrwm要大于工作电压,否则工作电压大于Vrwm会导致TVS反向漏电流增大,接近导通,或者雪崩击穿,影响正常电路工作。Vrwm可以参考以下的公式:Vrwm≈1.1~1.2*VCC(其中VCC为电路的最高工作电压)(2) 选择TVS钳位电压VCTVS 钳位电压应小于后级被保护电路最大可承受的瞬态安全电压,VC与TVS的雪崩击穿电压及IPP都成正比。对于同一功率等级的 TVS,其击穿电压越高VC也越高,所选TVS的最大箝位电压VC不能大于被防护电路可以承受的最大电压。否则,当TVS钳在VC时会对电路造成损坏。Vc可以参考以下的公式:VC<Vmax(其中Vmax为电路能承受的最高电压)(3) 选择TVS的功率Pppm(或者Ipp)TVS产品的额定瞬态功率应大于电路中可能出现的最大瞬态浪涌功率,理论上,TVS的功率越大越好,能够承受更多的冲击能量和次数,但是功率越高,TVS的封装越大,价钱也越高,所以,TVS的功率满足要求即可。对于不同功率等级的 TVS,相同电压规格的 TVS 其 V C 值是一样的,只是 I PP 不同。故 Pppm 与 Ippm成正比,Ippm 越大,Pppm 也越大。对于某一电路 ,有对应的测试要求,设实际电路中的最大测试电流为 Iactual ,则 Iactual 可估算为:Iactual=Uactual/Ri(Uactual为测试电压,Ri为测试内阻)TVS 要通过测试,故实际电路中要求 10/1000μs 波形下 TVS 的最小功率 P actual 为:-------其中di/dt为波形转换系数,如实际测试波形为其他波形,如 8/20μs波形,建议di/dt取,如测试波形为 10/1000μs,取,实际选型中,TVS 应留有一定的裕量,TVS 的功率PPMP 选择应遵循Pppm>Pactual。(4) 根据所选的TVS的结电容和漏电流评估影响若TVS 用在高速IO端口防护、模拟信号采样、低功耗设备场合,就需要考虑结电容和漏电流的影响,两则的参数越小越好。选型举例例如:电路的正常工作电压VCC是24V,最高工作电压Vmax是26V,后级电路可承受的最高瞬态电压为50V,实验的测试波形为 8/20μs波形,测试电压500V,测试电源内阻及PPTC的静态电阻合计为2Ω。根据上述信息选择合适的TVS。(1) 选择TVS最高工作电压Vrmw≈1.1~1.2*VCC=26~28V(2) 选择选择TVS钳位电压VC<Vmax=50V(3) 计算实际测试波形功率:Pact=50*(500/3)*1/2=4166W根据计算结果,可以选用5.0SMDJ26A这个TVS,由于这个TVS用在电源端口,结电容和漏电流可根据具体实际电路选用。5.0SMDJ26A TVS关键参数1.3、实际电路应用当设备的端口的工作电压超过了TVS的最高击穿电压(VBR MAX),TVS可以看成一个低阻抗的电阻,流过的电流非常大,电阻不断发热,如果没有其他措施,这个TVS很快就会挂掉,失效的TVS大概率变成了开路,后级的电路仍然处于没有保护之中。所以最好在TVS前面加一个保险管,在TVS挂掉前,保险管先失效断路,就可以保护TVS和后级电路,如果换成自恢复保险管,故障排除后就可以自行恢复正常工作。TVS用于防止过压保护的工作原理如下图所示是RS485的过压保护电路,RS485芯片的工作电压一般是5V,能够承受的极限电压一般是12V。通常设备的工作电压一般是12V或者24V,如果误将24V电源电压接到RS485A-B线上且没有过压保护,大概率RS485芯片会物理损坏。TVS管专门用于瞬间过压保护,无法应付长时间的过压,不到0.5STVS就会因过热烧毁,后级电路就会失去保护。如果在TVS的前面增加自恢复PTC,且PTC的跳闸时间足够短,并且TVS的钳位电压Vc<电路最高工作电压VCC,在TVS烧毁之前PTC跳闸,就可以实现后级电路的保护。 TVS管和自恢复PPTC配合使用时的计算思路过程如下所示:(1) 保护实现的前提条件当外加电压达到TVS的击穿电压时,TVS开始导通,阻抗变低,流过的电流不断增大。随着电流的不断增大,PPTC的阻抗不断增大,不断发热,最终PPTC变成断路失效,整个后级电路得以保护。所以要实现电路保护,需要2个前提:TVS的功率足够大,大到可以坚持到PPTC断路;PPTC的动作时间要足够小,小到要在TVS失效前动作。(2) PPTC选型用于过压保护时,PPTC的选型需要满足以下几个条件:持续电流Ihold>电路最大工作电流 Iwork;最大动作时间Trip越短越好,如 SMD1812B020TF,当通过 PPTC 的电流为 8A 时,PPTC 的动作时间应不大于 0.02s;最大过载电流Imax,工作温度范围内 PPTC不能超过的电流值,超过PPTC很大概率会永久性损坏;最大工作电压Vmax,工作温度范围内PPTC不能超过的最大工作电压值,超过PPTC很大概率会永久性损坏。(3) TVS选型TVS的选型要求如下:参照:上述1.2、TVS管选型小节;计算TVS可承受最大的热量Qtvs=P*t=P/1000(规格书给出的一般是1000uS下的功率,除以1000是转换为单位S)。计算所选的TVS实际的工作热量:Qact=Vc*Itrip*Tptc(Vc:TVS的钳位电压;Itrip:PTC保险的跳闸电流;Tptc:跳闸电流下的跳闸时间。)TVS的可承受热量实际选型Qtvs>理论计算Qact;电路设计举例如下图所示,PTC和TVS配合用于RS485过压保护,设备的供电电压是24V,RS485芯片选用MAX488,正常工作电压5V,最高可承受12V,正常工作电流<1mA,选择合适的PTC和TVS。PTC和TVS配合用于RS485保护(1) PTC选型由于RS485的工作电流非常小,PTC电流选择最小的即可,关键参数是跳闸时间Trip,Trip越小越好,越小跳闸时间越短,对TVS的功率要求越低,封装越小,成本越低。经过选型,SMD1812B020TF电流和电压满足要求,跳闸时间Trip是最短的,为0.02S。(2) TVS选型:TVS电压选型由于RS485的工作电压VCC为5V,极限电压为12V,因此TVS的工作电压Vrwm≥5V,钳位电压≤12V;可以预选SMBJ5.0A。Vrwm=5V,Vc=9.2V。TVS的功率选型a. 估算实际TVS需要承受的热量假设TVS工作在最大钳位电压,流过的电流为保险管的跳闸电流:Qact=P*t=U*I*t=Vc*I trip*Tptc=9.2V*8*0.02S=1.472Jb. 估算实际TVS的实际功率由于厂家给出的TVS测试的功率都是在1us的脉冲宽度下测量的,因此需要将上述的估算的热量折算为1uS时对应的TVS的功率。Ptvs>Qact/1us=1.472J/1us=1472W换算成峰值电流为:Ipp=P/Vc=1472W/9.2V=160A因此,最终TVS选择Vc=9.2V,Ipp=163的SMCJ5.0A。有的朋友认为上述的计算过程没有降额,实际上上述的计算过程基本都是按照极端的情况,忽略了PTC随着温度升高的电阻指数型增加,PTC上的电阻会分担很大一部分电压,到后期PTC濒临断路,TVS的承受压降几乎为零。因此不但不用降额,甚至TVS的功率可以选择乘以实际计算的0.5~0.8系数。1.4、总结TVS用于过压保护存在两个局限性:小信号和低速。(1) 小信号问题小信号比较好理解,我们电路用的是正常电流0.2A的PTC,但是选用的是160A的TVS,比例接近800倍,不可想象,如果用一个2A的PTC电源端口,TVS的功率需要超过15KW,售价接近10元,这个成本几乎是没人能接受的。由于PTC是自恢复,故障去除后又可以正常工作,避免了频繁更换的烦恼,但是PTC的跳闸时间较长,同等是0.2A的玻封保险管,电路达到8A的时候,几乎是10ms以内就可以跳闸,而PTC最短是200ms,这就导致了TVS的功率必须选得更大,以坚持到PTC跳闸(PTC要比TVS先失效才能起保护作用)。(2) 低速的问题一般的TVS的结电容为几十pF到数百pF,同功率等级,TVS电压越低,结电容越大,在小信号端口使用的功率TVS,除非是低电容的TVS,常规的功率TVS结电容都会在几十pF,因此小信号的速率不能过高,最好不要超过1Mbps。(3) 精确度问题上文提到的计算过程基本都是估算的,这是因为TVS和PTC属于电压和电流敏感型器件,失效模式都是热失效,细心的朋友会发现,厂家的TVS手册提供的电压、电流、温度等关系,都是给出一个大概的曲线图,都没有给出精确的计算公式。本文计算时虽然使用了精确的公式,但是都是极端情况下的,实际选用的TVS可以比计算值乘以系数0.5~0.8问题都不大,具体以实物测试为准。例如上例计算选择160A的TVS,实测使用100A的也能满足要求。2、可靠高效电路简单的过压保护电路一般加个TVS可以实现,当外部有瞬间高能量冲击时候它能够把这股能量抑制下来,虽然功率高,上千W都可以,但是维持抑制的时间很短很短,万一器件损坏或者长时间工作电压高于正常工作电压的时候,就力不从心了。所以最好的办法是设计一个智能电路了,如下所示:Vin正常输入电压时,稳压管没有反向击穿,R3,R4电流基本为0。PNP三极管的Vbe=0,即PNP三极管不导通。PMOS管Q4的Vgs由电阻R5,R6分压决定,PMOS管导通,即电源正常工作。当Vin输入大于正常输入电压,此时Vin>Vbr,稳压管被击穿,其上电压为Vbr。PNP三极管Q1导通,VCE≈0,即PMOS管的Vgs≈0,PMOS管不导通,电路断路,即实现了过压保护。若精度要求高,当然也可选用电压检测IC,实现电压监测。声明: 声明:文章来源网络。本号对所有原创、转载文章的陈述与观点均保持中立,推送文章仅供读者学习和交流。文章、图片等版权归原作者享有,如有侵权,联系删除。 来源:硬件笔记本

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习计划 福利任务
下载APP
联系我们
帮助与反馈