首页/文章/ 详情

无网格方法的最新研究进展

2天前浏览20

文一:

 

无网格大涡模拟的稳定涡粒子方法

摘要:

在数值稳定的无网格格式中,提出了一种新的涡粒子法(VPM)公式,用于大涡模拟(LES)。从LES滤波的Navier-Stokes方程中导出了一组新的VPM控制方程。新方程通过调整受涡流拉伸影响的涡流单元的大小来加强角动量守恒。除了VPM的重新表述外,还建立了一个新的子过滤器尺度(SFS)涡旋拉伸的各向异性动力学模型。该SFS模型非常适合具有相干旋涡结构的湍流,其中主要的叶栅机制是旋涡拉伸。通过对圆形湍流射流的模拟,验证了湍流和雷诺应力的平均分量和波动分量。该方案的计算效率在悬停中的飞机旋翼的模拟中得到了展示,表明我们的无网格LES比具有类似保真度的基于网格的LES快100倍。我们的无网格LES方案的实现是以开源软件FLOWVPM的形式发布的。

 

图:使用rVPM的eVTOL飞机的无网格LES:计算元素(左;涡流粒子和强度)和涡度场的体积绘制(右)。

 

图:具有单位尺寸和强度的旋涡颗粒:核心尺寸σ和旋涡强度Γ(左)、涡度场(中)、速度场和流线的等值线(右;用曲线箭头表示)。

 

图:球形流体元素的拉伸和涡度(或角速度)的增加。

 

图:旋涡颗粒(顶部) ,旋涡强度(中部)和 SFS 模型系数(底部)接近喷嘴的 t48毫秒。

 

图:在 t=48ms 的湍流射流中,涡量场的立体渲染显示出明显的流动特征: 在初始区域(z < 1d)形成相干的结构,混合并分解为 z > 3d。

 

图:沿湍流圆形射流的剖面。

 

图:转子模拟中的执行机构线模型; 被其涡量源着色的颗粒; 箭头表示涡强度的方向。

 

图:旋翼旋转15周后悬停的无网格大涡模拟: 计算元素(涡旋粒子和强度,左)和涡旋场立体渲染(右) ,视频补充内容。

 

图:螺旋桨模拟中的流场: 涡度场的瞬时立体渲染(上)和集 合平均的面内涡度切片(下)。

文二:

 

具有嵌入几何形状的两相流的欧拉无网格方法

摘要:

我们提出了一种新的求解任意嵌入几何形状两相流的欧拉无网格方法。使用无网格广义有限差分法(GFDM)计算空间导数。使用体积分数函数来跟踪锐相界面。使用基于方向通量的误差最小化的方法对体积分数进行平差。为了稳定性,平流项使用逆风格式离散化。在嵌入的几何图形附近,使用带符号距离函数填充几何图形的表面,以生成符合实体的点云。因此,边界上的点直接参与离散化,这与传统的浸入式边界方法不同,在传统的浸入边界方法中,它们要么用于计算动量不足(例如,连续强迫),要么用于计算守恒损失(例如,切胞方法)。因此,边界条件直接施加在嵌入几何体的这些点上,为体一致和分辨率空间变化的离散化开辟了可能性,同时保持了方案的一致性。我们提供了基准测试案例,验证了两相流、具有嵌入边界的流以及两者的组合的方法。

 

图:广义有限差分法: 点云中某一点的邻域。

 

图:共形点云的生成(a)一组具有嵌入几何形状的均匀分布的点(b) φmax 和 φmin 等高线,插入带点在此基础上被标记。

 

图:情况1:不规则域中的误差分布。彩色条显示错误。

 

图:案例3: Raylor Taylor 不稳定性。色谱图代表较重流体的体积分数。

 

图:案例5: 在不同的时间段,在一个圆形芯模腔内充满液体。左边的柱子显示了两个相ーー红色表示液体,蓝色表示气体。中间列显示的是 u 速度等值线,右边列显示的是 v 速度等值线。

文三:

 

一种改进的板结构车辆动力系统无网格计算框架

摘要:

在之前的列车-桥梁相互作用系统(TBIS)模拟中,列车的支撑系统通常被视为梁结构,导致结果不太准确,尤其是在小跨度情况下。为了解决这一限制,提出了一种改进的垂直TBIS。在所提出的TBIS中,支撑系统被视为Reissner–Mindlin板,位移场由一阶剪切变形理论(FSDT)描述。为了建立模型,采用了无网格径向点插值法(RPIM)。最后,建立了一个耦合动力学方程来计算系统的各种响应。通过几个算例说明了基于板模型的系统与传统梁模型的系统之间的差异。结果表明,梁模型对桥梁跨中垂直位移的估计值较高,而跨中垂直加速度的峰值与板模型相比较小;此外,还观察到车体主要受到轨道不规则性的影响。因此,与梁模型相比,所提出的板模型在提供全面的结构响应信息方面具有明显的优势,从而为桥梁设计和分析提供了新的见解。此外,这标志着无网格方法在TBIS领域的首次应用,进一步扩展了无网格方法的应用范围。

 

图:本文的工作思路。

 

图:列车-桥梁垂直相互作用系统。

 

图:时刻 t 的形函数矩阵 Nbl。

 

图:不同宽厚比板梁模型桥梁跨中竖向加速度𝑊t(左边和中间的图分别表示板模型的跨中加速度面和散射点图。右边的图显示梁模型的跨中加速度图)。

 

图:具有多个板的更高级别TBIS。

文四:

 

基于耦合无网格方法和元启发式算法的含水层流量参数估计

摘要:

对各种地下水问题的可靠分析需要准确输入含水层参数。然而,这种参数的现场测量是乏味和昂贵的。通过仿真优化(SO)的反向建模解决了这一限制。在这项研究中,使用SO模型估计了承压含水层的未知透射率。将强、弱和混合类无网格方法的三个模拟模型,即径向点配置法(RPCM)、无网格局部Petrov Galerkin(MLPG)和无网格弱强(MWS)形式,与差分进化(DE)、粒子群优化(PSO)和鲸鱼优化算法(WOA)的元启发式算法相结合,得到九个SO模型。这九个模型中有五个是新的SO模型,并且首次将WOA应用于地下水流量参数估计。将模型应用于非均质假设含水层和复杂场型含水层,证明了解决方案与真实透射率相似。本研究提供了基于可用资源和需求选择合适SO模型的见解。

 

图:建模程序。

 

图:(a) 假设含水层(b)节点布置(c)假设矩形含水层的分区模式。

 

图:根据(a)RPCM-CF、(b)MLPG-CF、(c)MWS-CF模型和(d)MODFLOW获得的现场型含水层的水头分布。

 

图:(a)DE(b)PSO和(c)基于WOA的SO模型的估计透射率值与实际值的比较。

文五:

 

无网格方法在裂纹问题应用中的最新进展

摘要:

无网格或无网格方法(MM)是解决裂纹问题的实用和优秀的数值技术。由于基于网格的方法(如有限元法)在建立裂纹模型方面的固有局限性,多有限元分析模型因其具有网格独立性和高阶连续性等显著优点而吸引了世界各地研究人员的注意。然而,关于裂纹问题中的 MM 的最新综述文献只有到2018年才能获得,自那时以来没有详细的相关分析报告。为了填补这个空白,这个国家的最先进的审查探索了新的潜力和进步的 MM 在裂纹问题。一般来说,有八种方法是用 MM 来重现裂纹行为的。为了提高效率和稳定性,我们从数值积分、方法耦合和适应性分析等方面探讨了现有的策略。在这些技术的基础上,分析了82篇被高度引用和有影响力的文章,以确定具体的 MM,模拟技术,以及采取的增强策略。在已有研究的基础上,提出了多种新的裂纹分析方法。此外,多种模拟裂纹技术的柔性耦合可以应用于不同材料中不同形式的裂纹。然而,由于缺乏可靠的误差估计数学基础,裂纹问题的自适应分析仍然需要在 MM 中广泛地进行。本文介绍了金属基复合材料在裂纹问题应用中的研究差距和发展前景。应该指出的是,本文没有引用1994年以前建立裂纹模型的数值方法的重要工作,作者认为这一决定对其范围和目标并不重要。

 

图:2013-2023年无网格方法关于裂纹问题的出版物和引文。

 

图:裂纹模拟的无网格与有限元耦合方法。

 

图:二维裂纹的 PFM 表示。


来源:STEM与计算机方法
复合材料湍流裂纹理论自动驾驶材料数字孪生控制渲染
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2025-11-01
最近编辑:2天前
江野
博士 等春风得意,等时间嘉许。
获赞 56粉丝 83文章 153课程 0
点赞
收藏
作者推荐

高分子材料(Polymer materials)的数值模拟前沿研究分享

文一: 聚合物复合材料断裂的梯度相间增强相场模拟方法摘要:与微米级夹杂物相比,纳米级填料颗粒在改善聚合物的弹性和断裂行为方面的优势已通过几项实验观察得到证实。然而,对这种非均质材料中裂纹扩展的精确建模涉及复杂裂纹拓扑结构的解析,同时考虑多个裂纹的聚结和分支。这种复杂性使得传统的尖锐裂纹建模方法,例如基于单位分割思想的方法,适用性有限,尤其是在3D中,因为这些方法涉及对演化裂纹表面的显式跟踪。因此,相场断裂方法已经成为传统尖锐裂纹模型的一种有吸引力的替代方法,尤其是当需要处理复杂的裂纹拓扑结构时。此外,标准的两阶段连续谱模型由于缺乏必要的长度尺度,无法捕捉到前面提到的较小即较强的尺寸效应。为了弥补这一缺陷,在有限应变超弹性的背景下,我们在先前的工作中引入了标准一阶连续体模型的基于梯度界面的增强。本贡献将梯度界面的思想扩展到相场断裂方法。在此,考虑了如实验所观察到的具有连续变化或分级材料性质的填料颗粒周围的界面区域。复合材料的断裂行为可以通过用于确定界面区域内的弹性和断裂特性的分级程度来控制。与标准相场断裂模型相比,分级相间参数的最佳组合产生了更硬的宏观响应,如在更硬相间的情况下所观察到的。通过广泛的数值实验,描述了所引入的技术对广泛的实验观察到的断裂行为进行建模的适当性,这取决于填料和基体相之间的粘附程度。 图:连续体的尖端裂纹示意图和弥散相场裂缝模型的示意图。 图:梯度相界概念。 图:建模示意图。 图:标准算例的断裂相场建模示意图。 图:在低相间断裂能的情况下,分级相间弹性对复合材料断裂响应的影响。文二: 模拟聚合物复合材料尺寸效应的增强计算均匀化技术摘要:几项实验研究证实,纳米夹杂物是比微米夹杂物更有效的增强聚合物的增强材料。标准的一阶计算均匀化方案由于缺乏必要的长度尺度来模拟这种尺度效应而存在不足,需要对标准方案进行改进。本文基于界面能量学的思想,对一个这样的扩展进行了深入的评估。系统的数值试验和分析表明了上述方法在复合材料力学行为建模中的局限性,即填充材料比基体更加刚性。提出了一种基于连续分级中间相思想的方法。通过具有代表性的数值算例对该方法进行了综合评价,表明该方法适用于不同填料-基体刚度组合的纳米复合材料的建模。 图:计算均匀化过程示意图,描绘了两个相关尺度下的BVP。 图:RVE 由基体材料(蓝色显示)和圆形夹杂物(红色显示)组成,具有(a)含能界面或(b)厚度为 t 的梯度界面(绿色显示)。 图:二氧化硅填料颗粒在环氧树脂基体中的相间性质随指数 n 值的变化。 图:IECH尺寸效应缩放:环氧树脂基体中橡胶颗粒的宏观Piola应力随填料颗粒尺寸的变化。 图:在单轴拉伸载荷作用下,橡胶颗粒在环氧树脂基体中的粒径和界面强度发生变化时,相应的柯西应力分量 σ11的节点值的云图。 图:在选定的颗粒半径下,RVE 在剪切载荷作用下的变形形状。为了显示填料和基体的相对位移,将变形形状叠加在未变形形状上。 图:相间厚度对容积加载尺寸效应标度的影响。 图:三维RVE的结构化六边形网格,a=100,r=25(和t=5),分别用于IECH和GICH。 图:三维强度尺度参数对两种方法的影响。本文研究了在体积载荷作用下,环氧树脂基体中二氧化硅颗粒在 a = 100,r = 25(和 t = 5)的固定微结构构型。文三: 扩展一个通用的快速粗粒度分子动力学模型来研究接枝聚合物纳米复合材料的力学行为摘要:聚合物纳米复合材料因其高通用性和良好的力学性能以及低密度而成为工程应用的一类重要材料。通过将聚合物链直接连接到纳米填料上,即所谓的接枝,实现了基质和填料之间更好的负载转移,此外,还获得了填料更好的分散性。两者都能增强力学性能。由于纳米尺度的实验研究极具挑战性,因此需要补充的数值研究来揭示聚合物纳米复合材料的力学行为。为此,分子动力学非常适合,因为它可以捕捉微观结构,但在数值上计算成本也很高。因此,这一贡献为研究接枝聚合物纳米复合材料的力学行为提供了一个快速粗粒分子动力学模型。为此,我们通过接枝键扩展了现有的模型,这使我们能够直接比较未处理和接枝填料的效果。特别是,我们研究了填料含量、接枝度和填料尺寸对聚合物(接枝)纳米复合材料刚度和强度的影响。我们得出的结论是,与未处理的填料相比,接枝键对刚度的影响很小,而强度显著提高,这与文献一致。所提出的聚合物接枝纳米复合材料的分子动力学模型为进一步研究,特别是关键的基质-填料界面提供了基础。此外,这一贡献将分子动力学的见解转化为力学性能,从而弥合了与工程规模的差距,从而代表着朝着开发聚合物(接枝)纳米复合材料的全部潜力迈出了一步。 图:嵌入热塑性基体的无机填料: a)未经处理填料的聚合物纳米复合材料(PNC) ; b)接枝填料的聚合物接枝纳米复合材料(PGN) ,即聚合物链与填料表面之间的共价键。 图:单轴拉伸模拟的刚度和强度。 图:填料含量的影响。 图:接枝键在聚合物链中的位置。文四: 非线性光弹性的数值模拟摘要:当分子光开关,如偶氮苯或降冰片二烯,嵌入到足够柔软的聚合物基体中时,所得化合物可以经历由特定波长的光引起的机械变形。这些光敏化合物具有作为软激励器应用的潜力,而不需要硬接线电子器件或单独的能源。这种特性在微型机器人的设计中 特别有吸引力,但其他应用,如高速数据传输或将光子能量转换为机械响应,也有很大的前景。尽管有这些几乎未来主义的可能性,光敏聚合物在工业应用中还没有得到足够的关注。提高这类软智能材料接受度的一个重要因素是结合数值模拟方法制定严格的本构建模方法。因此,在这篇文章中,我们提出了一种光机械建模方法,与之前发表的基本原理不同。我们简要介绍了必要的本构方程,这些方程随后与各自的平衡定律结合使用到有限元实现中。最后,通过一个简单的二维基准点示例说明了数值求解方法的能力,并随后将其扩展到更复杂的三维问题。 图:光致变形下未变形体和变形体的示意图。 图:(左)在可变强度光源照明下的材质样本草图。(右)施加10 mV电势差时有限元模型的变形。颜色映射和箭头指的是均匀化电子序参数的大小和方向。 图:(左) X 方向(虚线) ,Y 方向(虚线)和不同穿透深度的大小(实线)材料样品顶边中心点的位移。(右)变形材料样本。颜色是指在左边的图中选择的颜色。 图:(左)花瓣的一半与140个六面体单元相啮合的模型。(中)闭合的花,由八个完整的花瓣组成,以2 V的施加电势排列成花朵。(右)开放的花,以0.2 V的施加电位开放。彩色图是指位移大小。 图:(左)对于各种材质厚度值,花瓣尖端在Y方向(虚线)、Z方向(短划线)和大小(实线)上的位移。(右)变形的花瓣。着色是指变形。文五: 柔性管状金属-聚合物粘接接头的数值研究摘要:粘结管状接头已在各种工程和工业应用中得到应用,为连接管状基材提供了一种高效耐用的方法,同时确保了良好的密封性能。在这项工作中,提出了一种新的设计方法,用于在复杂载荷和被粘物大变形下承受大扭转旋转的粘结柔性管状金属-聚合物接头。为此,开发了两个不同的有限元模型。一种是针对较小的旋转值优化接头性能,另一种是使用内聚区建模并引入聚合物管状粘附物中的屈曲效应来预测整体接头强度。为了评估超弹性特性对接头性能和强度的影响,还考虑了不同的聚合物材料。三种不同接头布局的实验结果与数值结果吻合良好。结果表明,对于较小的旋转值,可以使用二维模型来准确预测关节行为。尽管如此,对于聚合物材料的高旋转值和大变形,复杂的3D模型(包括屈曲的影响)对于预测接头强度是必要的。 图:纯I型和II型的线性软化牵引分离定律。 图:管接头的布局、尺寸和胶粘剂厚度(以毫米为单位) : (a)-布局 X,(b)-布局 Y 和(c)-布局 Z。 图:用于制造管状接头的模具。 图:扭转试验装置。 图:不同关节布局的扭矩-扭转曲线实验研究。 图:通过解析解和本模型得到粘结层中的剪应力分布,采用粗网格和细网格。 图:变形形状,最大旋转角度沿轴线 = 180 ° 。 图:三维模型用于预测接头的最终旋转,网格表示。 图:对于布局 X、布局 Y 和布局 Z,前三个折叠模式形状。 图:不同布局的数值和实验扭矩-扭转曲线。 图:在旋转800 ° 时 X 排样的变形形状和粘接层中的 SDEG 损伤变量。来源:STEM与计算机方法

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习计划 福利任务
下载APP
联系我们
帮助与反馈