首页/文章/ 详情

Nature子刊:CFD方法可精确预测两相管道微流动的三种流动模式 | 前沿研究

16天前浏览1081
 CFD方法可精确预测两相管道微流动的三种流动模式蛇形微流体装置中两相流模式的计算流体动力学模拟
摘要:在目前的研究工作中,分析了液-液萃取(Liquid-liquidextraction, LLE)过程在蛇形微通道中的流动行为。使用3D模型进行模拟,发现结果与实验数据一致。本文测试了对氯仿(chloroform)和水的流动对流动模型的影响。数值仿真数据表明,一旦水相和有机相的流速低且相似,就会观察到段塞流模式。然而,随着整体射流速率的提高,段塞射流转变为平行的塞状射流或液滴射流。水射流的增加同时保持恒定的有机相射流速率会导致流动形态从段塞射流到液滴射流或塞流射流的转变。最后,对蛇形微通道中的流动速率模式进行了表征和描绘。本研究结果将为蛇形微流体装置中两相流模式的行为提供有价值的理解。这些信息可用于优化各种应用的微流体装置的设计。此外,该研究将证明CFD模拟在研究微流体装置中流动行为的适用性,CFD模拟是一种成本效益高且有效的实验研究替代方案。  

背景  

两相液-液(two-phaseliquid-liquid, LL)多相系统的使用在化学处理中很普遍,例如在聚合、硝化、氯化以及反应和溶剂萃取。这些工艺程序主要受到运输限制的阻碍,例如较小的传质速率。为了克服这些限制,小型化作为一种降低传输阻力和提高传输速率的实践方法,已被认为是一种很有前途的工艺强化方法。器件中微空间的利用可实现高传热和高传质速率。与宏观系统相比,微观两相流方案中更高的界面区体积比可以实现传热和传质速率的提高以及工艺效率的提高。与传统系统相比,工艺效率可以提高一个数量级。此外,扩大生产规模的便捷性提高了安全性,减少了库存需求,特别是对于使用危险和排他性化学品的系统,使微流体设备适用于广泛的应用。LL微通道中v特定系统的有效性在很大程度上取决于两种不混溶液体的流动方案。
微流体流动模式是指微尺度通道或设备中流体的流动行为模式。有三种主要的流动模式:平行流(parallel flow)、液滴流(droplet flow)和段塞流(slug flow)在微流体系统中较为常见。流动图像可以图形方式显示这些主要的流动模型与两相流之间的关系。了解微流体流动模式对于设计和优化特定应用的微流体设备非常重要。通过控制流动模式,研究人员可以操纵多相流动在微尺度通道中的行为,并开发出可以进行精确化学反应、分离和检测的设备。
基于微通道尺寸和形状、液体的物理特性(例如粘度和表面张力)、流动速率、液体的流动比和微通道壁的润湿行为等因素,在微流体工具中仔细检查了几种LL流动模式。两相微通道中最常见的LL流模式包括段塞流、塞流和液滴流。由于两相段塞内部的旋转和相邻段塞之间的扩散,段塞流在许多系统中是有利的。尽管如此,在段塞流中,微流体设备内部的混合相分离仍然是一个挑战。段塞流体动力学,特别是段塞长度和速度,对微流体装置的性能有着重要影响。根据前人研究结果显示,本文关注的流体力学问题主要受以下无量纲数控制:雷诺数(Re)、韦伯数(We)和毛细管数(Ca),来创建通用流配置图。在无量纲分析中使用的物理变量单位和无量纲数见表1和表2。  
 
表1 在无量纲分析中使用的物理变量单位      
 
表2 本文考虑的无量纲参数及其定义        
本研究使用CFD方法来确定蛇形微通道中的流动模式图,建立了微通道中的三种模式的流动:液滴流(droplet)、段塞流(slug)和插赛(plug)。本研究聚焦于微通道流动,揭示其在不同流动速率下的流动图像。此外,对微通道的多相流内部进行了数学计算,以区分蛇形微通道中的流动模型。实验结果验证了数学模拟的结果。      

数值模拟    

控制方程  
本研究使用VOF方法对涉及LL界面的多相流进行计算。通过求解质量守恒方程与动量守恒方程求解不可压缩不可互溶两相流动过程。在气液界面上,由于两侧表面张力的差异,会发生压力跳跃。在平衡方程中考虑了这一差异,其斜率应与动量平衡中增加的物体力相匹配。通过检测玻璃侧水滴的接触角,分析了该物质的润湿特性。接触角是用标准测角仪测量的。流体的物理特性如表3所示。  
             数值方法        
A.几何图形和网格
 
本研究选择三维微通道几何形状进行流动分析。几何形状和网格如图1所示。
 
图1 (a)微通道几何形状  (b)网格划分
微通道表面光滑,平均表面粗糙度为0.22μm。横截面面积约为0.13mm2,水力直径为0.32mm。每个微通道(混合部分)的长度为102mm。由于三维结构化网格能够处理复杂的几何结构并减少误差,因此将其用于网格生成。计算域最初是使用标准边长为5、3、2和1µm的网格(网格数为495000、950000、1920000和3850000)建立的。在解释了流场和体积分数的相关性后,将模拟的段塞长度与实验数据进行绘制比较。结果如表4所示,1µm和2µm元素段塞长度估计的比较误差小于1%。所以最后选择平均长度为2µm的网格分辨率作为数值模拟的阈值。
为了评估模拟中使用的网格质量,分析了网格单元的长宽比和偏斜度。长宽比表征的是每个网格元素的伸长率,高长宽比可能导致模拟结果不准确。而偏斜度表征与规则形状的偏差,高偏斜度可能导致数值过程的不稳定性。分析结果表明,大多数元素的长宽比低于3,表明网格没有被过度拉长。此外,偏斜度也在小于0.5的可接受范围内。基于这些结果,得出的结论:网格质量可接受,适合在本模拟中使用。
B.边界条件与离散方法
对于两相流模拟,实现两个液相的均匀入口速度边界条件。在出口处,设置为液体和气体的压力出口边界条件。壁面上施加液相无滑移边界条件。数值求解采用有限体积法。选择SIMPLE算法来计算压力-速度耦合。动量方程采用二阶迎风格式离散。残差的收敛准则设置为    

结果和讨论    

流动图像(flow map)作为描述不同LL方案的流动模型的图像,其可以展示流动速率如何影响流动机制的机理。图2、图3、图4和图5分别显示了蛇形微流体通道中不同的流态—段塞流(slug flow)、液滴流(droplet flow)和插塞流(plug flow)——这一点已通过Asadi等的实验结果得到验证。仿真结果与实验结果吻合较好。
 
 
图2 段塞流流场情况,(a)图为数值模拟结果;(b)图为实验结果
图2反应了当水相和有机相的流速度很小且相似时,会导致段塞流的发生。在这种情况下,水相和有机相的流量分别为每分钟100和100µl。如图所示,有机相首先进入主通道,并占据其截面的很大一部分,导致连续相在很大程度上被阻塞。这将导致施加到界面的阻力增加,导致有机相随着时间的推移逐渐完全进入主通道。这导致施加在界面上的阻力增加,导致有机相随着时间的推移逐渐完全进入主通道。在成形团块中产生的压力梯度和作用在界面上的阻力抵消了表面张力,导致分散相从微通道的y形入口分离。在这两种力主导表面张力的作用下,分散相与y结分离,形成团块。当水相流回其指定的入口时,团块将完全分离并沿着主通道移动。这个过程以交替的方式重复。由两相流产生的团块的大小和所用流体的物理特性可以改变。  
图3 液滴流流场情况,(a)图为数值模拟结果;(b)图为实验结果  
 
图4 插塞流流场情况,(a)图为数值模拟结果;(b)图为实验结果
随着总流量的增加,段塞流转变为插塞流或液滴流。流动模式取决于形式(form)和有机相的速率。如果降低水相流速而增加有机相流速,则流动模型将由段塞流切换为液滴流,如图3a所示,水相流速为600µl/min,有机相流速为30µl/min。如果水相流速保持不变,而有机相流速增加,则得到的流动模型将始终为插塞流,如图4a所示,水相流速和有机相流速均为500μl/min。图5a-c分别为氯仿的体积分数分别在段塞流、液滴流和平行流流动模式下的情况。  
 
 
图5 不同流动模型下,氯仿的三维流动体积分数分布图
图6中的流图展示了流量对液-液体系流态的影响。在中等状态下,可以观察到水相和有机相的流量相当的段塞流。随着总流量的增加,流动形式转变为塞流或液滴流。在水流量保持不变,有机相流量增加的情况下,根据有机相类型和流量的不同,流动模型由段塞流转变为液滴流或塞流。另一方面,如果在保持水流量均匀的情况下增加有机流量,则相应的流动模型为永久塞流,如图6所示。  
 
图6 基于数值计算的氯仿-水流动模型结果    
 
图7 以雷诺数Re为坐标的两相流流型图    
 
图8 以毛细管数Ca为坐标的两相流流型图
 
图9 以韦伯数We为坐标的两相流流型图  
图7、图8、图9分别以雷诺数Re、毛细管数Ca和韦伯数We为坐标,根据数值计算结果绘制了两相流的流型图。由图7可以看出,在有机相的Re数较高时,流动向平行流动方向移动。在水相高Re数和有机相低Re数时,流动方式为液滴流动。在相同的雷诺数和低雷诺数下,流动将会转变为段塞流。
图8和图9与Re数的情况相似,不同之处在于,在图9中,韦伯数的范围比两个无量纲数雷诺数Re和毛细管数Ca覆盖的范围更大。  
结论    
本文提出了一个新的模型,在此基础上可以对蛇形微通道内的流态进行预测。此外,本研究考察了在蛇形微通道中使用氯仿和水进行液-液萃取的流动行为。采用三维模型对蛇形微通道内的流动特性进行了计算,结果与实验数据吻合较好。分析了氯仿和水的流量对流型的影响,揭示了段塞流发生在低流量和相当流量下,但随着总流量的提高,过渡到平行或液滴流动。在保持有机相流速稳定的同时增加水流速,会导致段塞流向液滴流或插塞流的转变。在蛇形微通道中的流动模式也被描绘。此外,基于数值计算结果,给出了以Re、Ca和We为坐标的两相流流型图。结果表明,当有机相的Re、Ca和We数较高时,流动趋向平行流动;在水相高Re、Ca、We数和有机相低Re、Ca、We数时,流动方式为液滴流动。  
本文引自Nature子刊Scientficreports2023年6月发表的Computational fluiddynamics simulation of two-phase flow patterns in a serpentine microfluidicdevice.  
作者:YounesAmini1*,ValiyollahGhazanfari1 , Mehran Heydari1 , Mohammad MahdiShadman1 , A. Gh. Khamseh1 , Mohammad Hassan Khani1& Amin Hassanvand2  
单位:1 Nuclear Fuel Cycle Research School, NuclearScience and Technology Research Institute, Tehran, Iran.
2 Department of Polymer Engineering, Faculty ofEngineering, Lorestan University, Khorramabad, Iran. *email:Y_amini@alum.sharif.edu; Yamini@aeoi.org.ir
引用:Amini, Y., Ghazanfari, V., Heydari, M. et al. Computational fluid dynamics simulation oftwo-phase flow patterns in a serpentine microfluidic device. SciRep 13, 9483 (2023). https://doi.org/10.1038/s41598-023-36672-6
来源:多相流在线
ACT多相流化学通用UGUM控制数控管道
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2024-04-29
最近编辑:16天前
积鼎科技
联系我们13162025768
获赞 97粉丝 81文章 252课程 0
点赞
收藏

作者推荐

未登录
还没有评论

课程
培训
服务
行家

VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈