首页/文章/ 详情

海思总工10年经历,道出做好硬件工程师的“真相”

1小时前浏览22




前言

我从来不认为自己很出众,既不是聪明人,人生更没有一路开挂,只是有点好运气。十年间,我从一个没有光学知识背景的学生来到光电领域,从事了光模块开发,又机缘巧合地从开发转到维护,从维护又转到开发,每一次转身都像一次冒险,却让我有机会更接近做好硬件工程师的“真相”。
光模块实际上是围绕光器件应用、以硬件为主体的小系统产品,在光电领域做硬件就是做产品。在我看来,产品应该追求极致而非完美。产品最怕的不是有缺点,而是缺乏亮点。做产品就是要找到客户真正的痛点,然后将其解决方案做到极致。


不怕丢面子,才会有面子


     

当年,和我一起入职武研海思光电的有20个应届毕业生,我们当中有学光的、学电的,但是搞光电硬件两者都要懂,所以当时大家的学习氛围很好,互相补短,思想导师还充当了知识导师。可不凑巧的是,入职一个月时,我的导师就突然被安排出长差。导师这一走,我感觉自己成了“孤儿”,看着别人都有老师指点,内心那个羡慕啊。一次,部门老员工给新员工赋能,问了一个电路问题,结果我这个学电的答不上来,反倒被一个电路基础几乎为零的同事抢答。太丢人了,还好意思说自己是学电的?又不是没做过类似电路,怎么问题一深入就发懵答不上来?这事对我触动很大,看来不能光吃老本,是真要下番苦功夫了。

为了进步,我这个师傅不在身边的“孤儿”,只好想办法吃“百家饭“,怕丢面子就没面子,不怕丢面子,才有面子。之后,我一遇到想不明白的问题就找机会向老员工请教,也不管人家是做测试的还是搞架构的,是主攻软件还是主攻硬件的。有次,我又拿同一个问题去“骚扰”老员工,他边忙边丢了一句“下次记不住就记本子上啊!”我还不置可否,反正脸皮厚,有收获就好。直到有次经历让我碰了壁,才明白“好记性不如烂笔头”的道理。那天,我刚定位完硬件问题,准备用光纤组网,却不知道哪个光纤跳线是好的,傻乎乎地用肉眼找。谁知老员工早看出我的窘境,提醒我说:“你拿光功率计带着光纤和不带着光纤都测一下不就知道了?“我一听顿时傻了眼:是啊,怎么就没想到用工具?后来回想起来,我不是不会用工具,而是缺乏对物理原理的了解,不知道怎么用,更不知道怎么用最简单的办法解决问题。

我被这事一“激”,更感自己基础薄弱,既然天资一般,不如老老实实拿个本子做笔记,基础知识、反面案例、经验总结全都记在里面。就这么坚持了好多年,直到现在。最后,转正答辩的时候,我“特有面儿”地拿到了A,也更加坚信输在起跑线不可怕,努力总能追得上。


“摸鱼”,摸出来的电路灵感

2012年,光电开发首款突发接收模块。虽然突发接收模块和之前做过的连续接收模块有少许相似,但当时业界只有一套方案,成本很高,性能也不好。与此同时,业界只有一家芯片厂家在开发对应的集成芯片,且还在优化改版。这对于连突发接收的know-how都不清楚的我们来说,实在是太难。这就好比,过去我们是开着灯在10米的范围内看清一个靶子上贴的字条,现在变成了在闪光灯不停干扰的情况下,我们要在更远的区域看到多个分散的靶子上写的字。而我的任务更是棘手,要在一次闪光的时间内预判特定靶子离你有多远(就是所谓的突发光功率接收上报)。

开发前,为了快速上手,团队还找了行业大牛请教突发接收原理,但事后我发现原理性的东西虽很有帮助,但只能指引大的方向,微观上的细节还需自己摸索。在攻关的那段时间里,我也在一直思考,对于连续的同速率甚至更高速的模块原来都可以一板搞定,为什么这个模块做了这么多版还是在功能和性能上有问题,特别是某一个场景上报时产生了极大的问题,让已经延期一次的项目时间变得更紧。为了节约时间,我趁着焊工不在的时候,自己在芯片上搭电路飞0201电阻以及电容调参数,可问题依然存在。
项目交付的压力以及一次又一次的失败,让我慢慢失去了耐心。就在这时,幸运之神在我的头顶转了个“圈”。在一次实验室休息的间隙,我和兄弟们想不如放放音乐缓解下压力,于是十分魔性地用手机放了一曲《大悲咒》,没想到居然来了灵感。我看着手机的喇叭,突然联想到音响里有个储能电容,我们接收机不是也有个类似的大电容吗?怎么之前就把它给忽略了?我和同事们一讨论,发现大家在做连续接收模块时,根本不需要大电容,但这却是解决突发快速放电的关键。既然接收机内部的电容我们动不了,那就在外部增加电路加快它的响应速度,。思路一打开,困扰我许久的难点也迎刃而解,不仅加快了放电速度也加快了突发电流产生的时间 , 将整体时间压缩了8倍左右,最终主力版本也如期交付。
实际上在攻关突发接受上报的技术点时,还有一个更具挑战但不紧急的任务,就是寻求突破,实现低成本突发接收功能。我结合前期查阅的论文以及突发接收原理材料做出了一套电路,但经测试发现,设计电路的时候没有考虑极限温度,电路不太稳定。虽然后来知道怎么改,但是已经错过了降成本的空窗期,再做的价值意义已不大,这让我很沮丧。但是这次失败的研究,却让我从真正意义上深入了解了突发的原理和电路设计的关键点。没过多久机会就来了,客户不断提出诉求,希望再提升光模块性能,而且还要快速交付。于是,我把低成本突发接收功能技术用在这个版本上,结合研究时识别的提升光模块灵敏度关键点,并优化电路架构,不仅一版成功,而且还将光模块做到了业界性能以及成本最优。将竞争对手甩在了后面,帮助客户持续溢价盈利。

这几次经历让我深深明白了,要做好一个硬件产品,必须得完全了解所用元件的原理和构成以及物理特性,没有深入骨髓的理解,就不可能有全盘的考虑。哪怕产品在通往极致的路上,走了些弯路也别着急,坚持了,你就赢了。


别人说做不出来的,也许我可以试试

2015年海思PON光模块产品提速,客户产品线同时想提升端口密度,那就需要更小封装的配套产品,可业界的同类产品都是大封装,无法匹配。各厂家经过尝试,仅M公司的功耗和性能满足基本应用要求。但我要解决的是,不仅把产品的功耗降下去,还要把性能提上来。但其实这两者是矛盾的,功率大,性能强,功耗自然就高,唯一的办法只能是尽量压缩功耗。

分析来分析去,我发现TEC是模块中那些功耗损失的大头。为了找到方案,我不断搜索论文,看专利,试图找到破解之法,后来,我听说其他领域模块的团队之前尝试过很多方案,便邀请他们看下我的方案给点思路建议,可是他们直接否定了我认为的“短期最可行”方案。其中一个专家更直言不讳:“这个方案只是看起来很美,我们之前试过,不成立的。” 回到座位后,我一直思考他说的话,但并不想就此放弃,心里盘算着再继续往深研究一下。
于是我又去找专家仔细了解了他们之前验证的全过程,倒推他们是哪里出了问题。一遍一遍推演论证,终于被我发现,不成立是由于应用场景不同导致的。他们觉得行不通的电路原理却适用于我这种波长相对不敏感的场景,最终我们通过实际验证获得了30%的TEC功耗降幅收益。有了这个竞争优势,就这样我们团队的产品又火了一把。
时代在发展,经验固然非常重要,但是要想做好硬件,万不可过分迷信过往的经验。一样的产品问题面对不同的场景和时间,往往解决办法是差异化的。面对你要使用的器件,就得深入去了解它的特点,多问一些为什么,才能有针对性地去设计,找到最优解。而这种不断优化的探索精神,其实是每一位硬件工程师化腐朽为神奇的魔法。
如果要把单板做个比喻,我认为它在产品里就像是身体的骨骼, 是驱动全身的关键。要想将硬件设计做到极致,不仅要了解周边部件的特点,也要将自己的硬件设计做到恰到好处。我父亲是国家恢复高考后的第一批大学生,他常告诉我:有些事只要想做好,就不能只做个“差不多”。这句话也贯穿他整个职场生涯,即便他后面做了管理者,依然在技术上精益求精。父亲对我影响很大,从我开始做光模块到现在,我都认定了一件事,那就是做出好产品,跟“差不多先生”说NO,才能离“极致”更近一点,再近一点。

声明:


 
明:本文转载自《华为人》。本号对所有原创、转载文章的陈述与观点均保持中立,推送文章仅供读者学习和交流。文章、图片等版权归原作者享有,如有侵权,联系删除。

来源:硬件笔记本
电路光学电子芯片材料储能
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2025-11-18
最近编辑:1小时前
硬件笔记本
本科 一点一滴,厚积薄发。
获赞 156粉丝 45文章 581课程 0
点赞
收藏
作者推荐

经典运放电路分析

从虚断,虚短分析基本运放电路运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。在分析它的工作原理时倘没有抓住核心,往往令人头大。为此本人特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位看完后有所斩获。遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!今天,教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。虚短和虚断的概念由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80dB以上。而运放的输出电压是有限的,一般在10V~14V。因此运放的差模输入电压不足1mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。好了,让我们抓过两把“板斧”------“虚短”和“虚断”,开始“庖丁解牛”了。1)反向放大器:图1图一运放的同向端接地=0V,反向端和同向端虚短,所以也是0V,反向输入端输入电阻很高,虚断,几乎没有电流注入和流出,那么R1和R2相当于是串联的,流过一个串联电路中的每一只组件的电流是相同的,即流过R1的电流和流过R2的电流是相同的。流过R1的电流:I1=(Vi-V-)/R1………a流过R2的电流:I2=(V--Vout)/R2……bV-=V+=0………………cI1=I2……………………d求解上面的初中代数方程得Vout=(-R2/R1)*Vi这就是传说中的反向放大器的输入输出关系式了。2)同向放大器:图2图二中Vi与V-虚短,则Vi=V-……a因为虚断,反向输入端没有电流输入输出,通过R1和R2的电流相等,设此电流为I,由欧姆定律得:I=Vout/(R1+R2)……bVi等于R2上的分压,即:Vi=I*R2……c由abc式得Vout=Vi*(R1+R2)/R2这就是传说中的同向放大器的公式了。3)加法器1:图3图三中,由虚短知:V-=V+=0……a由虚断及基尔霍夫定律知,通过R2与R1的电流之和等于通过R3的电流,故(V1–V-)/R1+(V2–V-)/R2=(V-–Vout)/R3……b代入a式,b式变为V1/R1+V2/R2=Vout/R3如果取R1=R2=R3,则上式变为-Vout=V1+V2,这就是传说中的加法器了。4)加法器2:图4请看图四。因为虚断,运放同向端没有电流流过,则流过R1和R2的电流相等,同理流过R4和R3的电流也相等。故(V1–V+)/R1=(V+-V2)/R2……a(Vout–V-)/R3=V-/R4……b由虚短知:V+=V-……c如果R1=R2,R3=R4,则由以上式子可以推导出V+=(V1+V2)/2V-=Vout/2故Vout=V1+V2也是一个加法器,呵呵!5)减法器图5图五由虚断知,通过R1的电流等于通过R2的电流,同理通过R4的电流等于R3的电流,故有(V2–V+)/R1=V+/R2……a(V1–V-)/R4=(V--Vout)/R3……b如果R1=R2,则V+=V2/2……c如果R3=R4,则V-=(Vout+V1)/2……d由虚短知V+=V-……e所以Vout=V2-V1这就是传说中的减法器了。6)积分电路:图6图六电路中,由虚短知,反向输入端的电压与同向端相等,由虚断知,通过R1的电流与通过C1的电流相等。通过R1的电流i=V1/R1通过C1的电流i=C*dUc/dt=-C*dVout/dt所以Vout=((-1/(R1*C1))∫V1dt输出电压与输入电压对时间的积分成正比,这就是传说中的积分电路了。若V1为恒定电压U,则上式变换为Vout=-U*t/(R1*C1)t是时间,则Vout输出电压是一条从0至负电源电压按时间变化的直线。7)微分电路:图7图七中由虚断知,通过电容C1和电阻R2的电流是相等的,由虚短知,运放同向端与反向端电压是相等的。则:Vout=-i*R2=-(R2*C1)dV1/dt这是一个微分电路。如果V1是一个突然加入的直流电压,则输出Vout对应一个方向与V1相反的脉冲。8)差分放大电路图8由虚短知Vx=V1……aVy=V2……b由虚断知,运放输入端没有电流流过,则R1、R2、R3可视为串联,通过每一个电阻的电流是相同的,电流I=(Vx-Vy)/R2……c则:Vo1-Vo2=I*(R1+R2+R3)=(Vx-Vy)(R1+R2+R3)/R2……d由虚断知,流过R6与流过R7的电流相等,若R6=R7,则Vw=Vo2/2……e同理若R4=R5,则Vout–Vu=Vu–Vo1,故Vu=(Vout+Vo1)/2……f由虚短知,Vu=Vw……g由efg得Vout=Vo2–Vo1……h由dh得Vout=(Vy–Vx)(R1+R2+R3)/R2上式中(R1+R2+R3)/R2是定值,此值确定了差值(Vy–Vx)的放大倍数。这个电路就是传说中的差分放大电路了。9)电流检测:图9分析一个大家接触得较多的电路。很多控制器接受来自各种检测仪表的0~20mA或4~20mA电流,电路将此电流转换成电压后再送ADC转换成数字信号,图九就是这样一个典型电路。如图4~20mA电流流过采样100Ω电阻R1,在R1上会产生0.4~2V的电压差。由虚断知,运放输入端没有电流流过,则流过R3和R5的电流相等,流过R2和R4的电流相等。故:(V2-Vy)/R3=Vy/R5……a(V1-Vx)/R2=(Vx-Vout)/R4……b由虚短知:Vx=Vy……c电流从0~20mA变化,则V1=V2+(0.4~2)……d由cd式代入b式得(V2+(0.4~2)-Vy)/R2=(Vy-Vout)/R4……e如果R3=R2,R4=R5,则由e-a得Vout=-(0.4~2)R4/R2……f图九中R4/R2=22k/10k=2.2,则f式Vout=-(0.88~4.4)V,即是说,将4~20mA电流转换成了-0.88~-4.4V电压,此电压可以送ADC去处理。注:若将图九电流反接既得Vout=+(0.88~4.4)V,10)电压电流转换检测:图10电流可以转换成电压,电压也可以转换成电流。图十就是这样一个电路。上图的负反馈没有通过电阻直接反馈,而是串联了三极管Q1的发射结,大家可不要以为是一个比较器就是了。只要是放大电路,虚短虚断的规律仍然是符合的!由虚断知,运放输入端没有电流流过,则(Vi–V1)/R2=(V1–V4)/R6……a同理(V3–V2)/R5=V2/R4……b由虚短知V1=V2……c如果R2=R6,R4=R5,则由abc式得V3-V4=Vi上式说明R7两端的电压和输入电压Vi相等,则通过R7的电流I=Vi/R7,如果负载RL<<100KΩ,则通过Rl和通过R7的电流基本相同。11)传感器检测: 图11来一个复杂的,呵呵!图十一是一个三线制PT100前置放大电路。PT100传感器引出三根材质、线径、长度完全相同的线,接法如图所示。有2V的电压加在由R14、R20、R15、Z1、PT100及其线电阻组成的桥电路上。Z1、Z2、Z3、D11、D12、D83及各电容在电路中起滤波和保护作用,静态分析时可不予理会,Z1、Z2、Z3可视为短路,D11、D12、D83及各电容可视为开路。由电阻分压知,V3=2*R20/(R14+20)=200/1100=2/11……a由虚短知,U8B第6、7脚电压和第5脚电压相等V4=V3……b由虚断知,U8A第2脚没有电流流过,则流过R18和R19上的电流相等。(V2-V4)/R19=(V5-V2)/R18……c由虚断知,U8A第3脚没有电流流过,V1=V7……d在桥电路中R15和Z1、PT100及线电阻串联,PT100与线电阻串联分得的电压通过电阻R17加至U8A的第3脚,V7=2*(Rx+2R0)/(R15+Rx+2R0)…..e由虚短知,U8A第3脚和第2脚电压相等,V1=V2……f由abcdef得,(V5-V7)/100=(V7-V3)/2.2化简得V5=(102.2*V7-100V3)/2.2即V5=204.4(Rx+2R0)/(1000+Rx+2R0)–200/11……g上式输出电压V5是Rx的函数我们再看线电阻的影响。Pt100最下端线电阻上产生的电压降经过中间的线电阻、Z2、R22,加至U8C的第10脚,由虚断知,V5=V8=V9=2*R0/(R15+Rx+2R0)……a(V6-V10)/R25=V10/R26……b由虚短知,V10=V5……c由式abc得V6=(102.2/2.2)V5=204.4R0/[2.2(1000+Rx+2R0)]……h由式gh组成的方程组知,如果测出V5、V6的值,就可算出Rx及R0,知道Rx,查pt100分度表就知道温度的大小了。声明: 声明:文章来源网络。本号对所有原创、转载文章的陈述与观点均保持中立,推送文章仅供读者学习和交流。文章、图片等版权归原作者享有,如有侵权,联系删除。 来源:硬件笔记本

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习计划 福利任务
下载APP
联系我们
帮助与反馈