首页/文章/ 详情

目前这个电路方案已经出货100K以上了,品质很稳定,客户希望我们抄板......

1小时前浏览15

前几天收到一台客户提供的竞品机器,电路板方面客户希望我们抄板,目前这个电路板方案已经出货100K以上了,品质很稳定,客户希望我们照抄设计,仔细看了样机的电路板后,发现成本控制的很好,而且设计有点意思。以下是我抄板的图纸,截取部分原理图,欢迎大家来讨论分析下工作原理和各个部件的作用,以及为什么要这么设计?

以下我将尝试对该电路设计进行工作原理分析,在这里我将尝试从最基础的讲解,用最通俗的语言来阐述(老鸟们不要嫌我啰嗦),阐述的不好的地方请各位大佬尽情的喷我,欢迎指正。

言归正传,先上原理图:

先说阻容降压部分,R8,C2,D2,D3,ZD1,ZD2构成常见阻容降压电路,交流电经过半波整流阻容降压后,在两个稳压管ZD1,ZD2两端形成11.2V左右的直流电压(这个电压是提供给后面的12V继电器使用的)。阻容降压电路交流电的正负半周的电流流向分别如下:

交流电正半周电流流向


交流电负半周电流流向


负半周时,D2为C2提供交流通路,D3起到隔离单向截止的作用。阻容降压电路还是比较简单的,下面讲系统电源的供电电路。

单片机系统供电为5V,Q2和ZD2组成5V稳压电路,Q2的发射极电压跟随基极电压,基极电压被钳位在5.6V。所以相对于GND1这个参考电位来说,Q2发射极电压为6.3V,因为Q2发射极的电压约为0.7V。我们知道ZD1,ZD2两端的电压为11.2V.根据原理图,稳压管ZD1,ZD2支路是和Q2、EC2这两个器件串联后的支路并联在一起的。

分别是下图的支路1和支路2:


支路1的电压为已知的11.2V。支路2中Q2的集电极和发射极的电压为上面已知的6.3V。可得知EC2上面的电压为11.2-6.3=4.9V。好了,至此,我们明白了单片机 VCC电压是如何产生的了。以下图片电流流向很好的说明了VCC是如何产生的。

最终EC2上的电位差为4.9V


下面来讲讲过零检测电路,在该方案中,过零检测信号是用来给单片机计时用的,一般来说,只要过零检测电路滤波做的好,软件处理的好,计时精度还是能让人满意的。一般情况下会比单片机的内震计时精度要高。我们看电路,D1,R2,R6,Q1组成过零检测电路,交流电正半周时,Q1会导通,交流电的负半周时,Q1会截止。这样在单片机的PA6口就能检测到一个高低跳变的方波,在交流电经过零点的时刻,波形会跳变(波形如下),我们知道,电网频率是固定的,也就是说每个周期内交流电经过零点的次数是固定的,根据这个道理,计数一定时间内的过零点的数量就能准确的算出经过了多少周期,以上,单片机就是通过这个方法来计时的。

方波为过零信号,正弦波为交流电波形


交流电正半周时的电流通路


交流电负半周时的电流通路,此时Q1截止


上图中D1的作用为,在交流电的负半周时,防止Q1的发射结反向击穿,因为三极管的发射结的反向耐压一般只有几伏。加入D1后,负半周时,发射极会被D1给钳位为0.7V,从而保证了Q1发射结的安全。

这电路巧妙的地方,用两个稳压二极管人为的制造了两个电压,一个大概5v,一个大概12V,Q2的作用是利用稳压管稳住基极电压来稳住发射级电压,和一个稳压管相比,最大的作用是增加电流。

以上就是今天的分享,因时间仓促,水平有限,写的不准确的地方请大佬们批评指正。最后,写文不易,请大家帮忙点赞分享,谢谢你们的支持!


声明:


 

声明:文章转载来自:喝枸杞论电子(头条)。本号对所有原创、转载文章的陈述与观点均保持中立,推送文章仅供读者学习和交流。文章、图片等版权归原作者享有,如有侵权,联系删除。 

来源:硬件笔记本

电源电路电子控制
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2025-11-20
最近编辑:1小时前
硬件笔记本
本科 一点一滴,厚积薄发。
获赞 156粉丝 45文章 641课程 0
点赞
收藏
作者推荐

安全不能忽视!触摸金属外壳,感觉手麻,从电路角度来告诉你是怎么回事

问题描述当用手去触摸电控系统的金属外壳,比如开关电源的金属外壳时,经常会有手被麻一下的感觉。尤其是光脚站在地板上去触摸的时候,麻的感觉更加明显。但是手一直按住以后,又不再持续有麻的感觉,本文尝试通过仿真分析下原理以及可能有用的措施。原因分析图1. 开关电源原理图图2. 几个关键测试点对地的波形1、初级地有-300V半波波形;2、次级地有-240~+90V的信号波形;3、手摸上去瞬间,会产生脉冲电流,会有麻一下的感觉,强度与时间点有关,波峰处最强(15ms,35ms….)。图3. 示波器测量时的波形1、初级地有-300V半波波形;2、次级地有90V左右波形;3、搭上示波器,次级幅度变小,可理解为Y电容与示波器探头分压了;可以得出,Y电容越小,次级信号越弱图4. 手按住开关电源次极时,示波器测得的波形1、初级地有-300V半波波形;2、次级地几乎没有电压;3、手按住后,不会一直麻对策为什么会手麻按住次级,加在人体上的电压很小,不会有麻的感觉; 触碰瞬间,Y电容有个充电过程,产生脉冲电流,才会有麻的感觉; 减小人体触电的感觉,有以下两种办法:减小Y电容的容量;减小次级地对大地阻抗。对策及验证——减小Y电容的容量图5. 减小Y电容容量之后的波形去掉Y电容后,即使是次级悬浮,也只有不到10V电压,手摸上去不会有感觉。注:理想情况下,次级悬浮时,次级地应该接近于初级地信号,搭上示波器才会变小。但是在仿真模型中,变压器应该是有寄生参数,接入变压器,次级输出就接近于零;断开变压器,次级输出接近于初级输出。对策及验证——减小次极参考地对大地阻抗图6. 减小次极参考地对大地阻抗之后的波形减小对地阻抗,比如加入47nF电容后,即使次级悬空,信号也小于10V ,手摸上去不会有麻的感觉。注:次级地加大电容到大地,会引入EMC问题。对策及验证——触碰瞬间电流波形图7. 仿真测试人触摸瞬间的电流波形Y电容及触摸时间点对脉冲电流的影响图8. Y电容及触摸时间点对脉冲电流的影响Y电容越小,脉冲电流越小,越不容易“电”到人。理论上,在过零点触碰,也不会“电”人。注:即使变压器完全断开,Y电容15pF时,仿真脉冲电流也小于1mA.总结1、开关电源初级地不是大地,相对零线或地线有一个-300V 50H左右的半波波形;2、为了EMI性能,开关电源通常有Y电容,Y电容将初级地的交流信号引到次级;3、人体有一定阻抗,2K左右;当手触摸次级地瞬间,次级地的信号会加在人体身上,产生一个脉冲电流,便有麻一下的感觉;4、Y电容通常是nF级别,此电容在50Hz下阻抗为兆级别,手按住后,分到人体上的电压可以忽略,所以按住后不会再有麻的感觉;5、Y电容的使用不会对人体产生安全风险,仅是在特定条件下会“电”到人;6、从原理上分析,降低Y电容,或减小次级对地阻抗 ,可以避免“触电”。减小对地阻抗,可能引入EMC问题。EMI 影响分析未加入C4时,EMI信号主要路径如图中绿中所示,集中在板内,没有走到火线和零线上。加入C4后,增加了红色的路径,此时在零线和火线都是信号回路的路径,容易产生EMI问题,可以考虑C4上串一个电感。图9. 次极参考地与大地之间增加电容对信号回路的影响声明: 声明:文章来源头条物联网全栈开发。本号对所有原创、转载文章的陈述与观点均保持中立,推送文章仅供读者学习和交流。文章、图片等版权归原作者享有,如有侵权,联系删除。 来源:硬件笔记本

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习计划 福利任务
下载APP
联系我们
帮助与反馈