首页/文章/ 详情

电容触摸的基本知识与原理

2小时前浏览11


概述

电容式触摸感应,是一种通过电容的变化来检测手指接近或触及触摸表面的技术。通过电容式感应,机械开关和旋钮可替换为外观雅致的按钮、滑条和滚轮,以解决:
1. 长时间使用后磨损和可靠性降低
2. 前面板与按键之间存在缝隙,容易被水分渗透,而引起不良
3. 需施加力度才能触发
4. 前面板开孔会一定程度上增加成本
5. 按键形状较为固定


基本原理


常见的电容触摸传感器如图2-1所示,一般以PCB上的覆铜作为电极。结构上,顶层会覆盖非导电性的防护层,如玻璃或塑料,利用胶水和PCB粘连。另外传感器周围会覆有网格地。


基于所检测电容的类型,电容触摸可分为自感型电容检测(检测单电极和地之间的电容值),互感型电容检测(检测双电极之间的电容值)。
自感型电容检测
以最简单的单按键为例,自感型电容的检测示意图如图 2-2 所示,检测模型如图 2-3 所示。自感型电容利用覆铜形成的单电极(接收电极Rx),来检测电极对地的电容变化。按键对地的初始电容为Cp,当人手触摸时,会给整个环路引入 Ct,Ch 与 Cg,从而使按键的对地电容增大
说明:实线表示实际走线,虚线表示非实际走线。灰色元器件表示等效电容或电阻。
Rh: 人体电阻。
Rs: 串联电阻,推荐值为 470Ω。
Cp: 按键与所连导线的对电源地寄生电容。
Cg: 电源地与大地之间的电容。对于电池应用,大约为 1pF。对于接地应用为短路。
Ch: 人体与大地之间的串联电容。
Ct: 电级与人指尖形成的电容,类似于平板电容器结构。
Cd: 人手与电源地形成的电容。

为便于分析,忽略 Rh,Rs 的影响。按键对地的等效电容如公式 1-1 所示。灵敏度可以表征为触摸产生的电容变化与基础电容之间的比,如公式 1-1 所示。其中由于 Ch 较于 Cg 和 Ct 较大,因此可忽略。在地平面较稀时,𝐶𝑑较小,因此𝐶𝑔 + 𝐶𝑑可约等于𝐶𝑔。
A: 手指与传感器垫片覆盖层的接触面积。
d: 覆盖层的厚度。
ε0: 空气介电常数。
εr: 覆盖层的介电常数。
由公式 1-2 和 1-3 可知,提高灵敏度的方法有:
1)减小盖板的厚度,提高盖板的𝜀𝑟,从而提高𝐶𝑡;
2)减小网格地的密度,或增加 PCB 的厚度,从而降低𝐶𝑝;
3)由于𝐶𝑡与𝐶𝑔数量级相同,合理的将电源地与大地相连从而增加𝐶𝑔;

4)合理的增大电极的面积,通过提高手指与传感器垫片覆盖层的接触面积 A 来提高 Ct。

要注意,无法通过无限增大电极的方式来增加灵敏度。主要因为平行板电容 Ct 的最大有效面积与手指触摸面积相同,另外过大的电极面积无法增加触摸信号强度,反而会增加𝐶𝑝,导致灵敏度降低。


互感型电容检测

如图 2-4 所示,互感型电容利用覆铜形成的双电极(接收电极 Rx,发送电极 Tx)来检测两电极之间电容的变化。互感型电容检测的最大特点是可以忽略按键对电源地的寄生电容 Cp 的影响。以最简单的单按键为例,互感型电容的检测模型如图 2-5 所示。当人手触摸时,CRT 变成两个 2CRT,同时引入 CRTt,Ct,Ch 与 Cg。最终使双电极间的电容减小

说明:实线表示实际走线,虚线表示非实际走线。灰色元器件表示等效电容或电阻。
CRTt: 手指触摸引入的Rx和Tx电极之间的并联电容。
CRT: Rx和Tx电极之间的电容,当人手触摸时,等效分为两个容值2CRT的电容。
Tx 与 Rx 之间的等效电容如公式1-4所示。灵敏度可以表征为触摸产生的电容变化与基础电容之间的比,如公式 1-5 所示。

对于互感触摸,提高灵敏度的主要方式为:
1)降低覆层的厚度;
2)增大 Tx 和 Rx 之间的间距。要注意虽然增大 Tx 和 Rx 之间的间距能够减小𝐶𝑅𝑇,提高检测距离,变相地提高灵敏度,但如果手指无法同时覆盖 Tx与 Rx,灵敏度反而会减小。
一般来说,对于自感与互感型电容检测,手指触摸产生的电容变化均在 1pF 左右。但自感的 base 电容(触摸前的电容值)一般会高于互感的 base 电容。因此相对来说互感的灵敏度更高,但也更易受噪声的影响。
从应用的角度来看,自感型方案由于结构简单使用的更广,而互感型方案更多的用于矩阵按键,以使支持的按键数远超过电容触摸的 IO 口数(自感型按键数)。两种方案之间的比较如表 2-1 所示。


TI 的电容触摸感应技术 CapTIvate™以电荷转移采集为基础。该原理包括:
1)将传感器电容𝐶𝑒𝑞𝑢𝑎𝑙充电;
2)将累积电荷转移至内部采样电容𝐶𝑠𝑎𝑚𝑝𝑙𝑒 ,这两部分。

此过程将不断重复,直至 𝐶𝑠𝑎𝑚𝑝𝑙𝑒 两侧电压达到内部比较器的触发电压𝑉𝑡𝑟𝑖𝑝。达到阈值所需的电荷转移次数直接表征𝐶𝑒𝑞𝑢𝑎𝑙的大小。当电容传感器被人手触摸时,𝐶𝑒𝑞𝑢𝑎𝑙发生改变,这意味着 𝐶𝑠𝑎𝑚𝑝𝑙𝑒 电压达到 𝑉𝑡𝑟𝑖𝑝所需的电荷转移次数发生了变化,MCU 通过比较前后电荷转移次数的差异,来感知触摸事件的发生。MSP430 内部采用电流镜来控制𝐶𝑠𝑎𝑚𝑝𝑙𝑒 的输入电流和𝐶𝑒𝑞𝑢𝑎𝑙的放电电流之间的比例关系,以此来等效放大𝐶𝑠𝑎𝑚𝑝𝑙𝑒 ,从而拥有较大的量程。

对于自感检测,传感器电容𝐶𝑒𝑞𝑢𝑎𝑙等于 Tx I/O 口的对地电容,通过对地的充放电,将𝐶𝑒𝑞𝑢𝑎𝑙中的电荷转移到内部的𝐶𝑠𝑎𝑚𝑝𝑙𝑒 中,如图 2-6 所示。互感检测的传感器电容𝐶𝑒𝑞𝑢𝑎𝑙等于 Tx 与 Rx 两 I/O 之间的互电容。互感检
测的电路结构相比自感检测更为复杂,但实际上也是对地充放电。通过保持充放电前后对地电容两端电压不变的方式,来实现仅对互电容的电荷转移。


声明:


 
声明:文章来源TI。本号对所有原创、转载文章的陈述与观点均保持中立,推送文章仅供读者学习和交流。文章、图片等版权归原作者享有,如有侵权,联系删除。  


来源:硬件笔记本
电源电路电子控制
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2025-11-21
最近编辑:2小时前
硬件笔记本
本科 一点一滴,厚积薄发。
获赞 156粉丝 45文章 641课程 0
点赞
收藏
作者推荐

这几种MOS栅极驱动电路有点强

1、IC直接驱动型这种电源IC的直接驱动是最常见、最简单的驱动方式。图1 IC直接驱动MOS栅极 使用这种方法,我们应该注意几个参数及其影响。首先查看电源IC手册,了解最大峰值驱动电流,因为不同的IC芯片具有不同的驱动能力。其次,检查MOSFET的寄生电容,如图中的C1、C2和C3,如果容值较大,导通MOS管所需的能量也比较大。如果电源IC没有足够的峰值驱动电流,晶体管将以较慢的速度开启。如果驱动能力不足,上升沿可能会出现高频振荡,即使减小图1中的Rg也无法解决问题!而IC驱动能力、MOSFET寄生电容、MOSFET开关速度等因素,也会影响驱动电阻的选择,所以Rg不能无限减小。2、图腾柱电路增强驱动该驱动电路的作用是增加电流供应能力,快速完成栅极电容输入的充电过程。这种拓扑增加了开通所需要的时间,但减少了关断时间,开关管能够快速开通,避免上升沿的高频振荡。图2 图腾柱电路增强驱动 3、驱动电路加速MOS管的关断在关断的瞬间,驱动电路可以提供尽可能低阻抗的通路,使MOSFET的栅极和源极之间的电容快速放电,保证开关管可以快速关断。为了保证栅极源极间电容C2的快速放电,在Rg1上并联了一个Rg2和一个二极管D1。其中D1通常采用快恢复二极管,缩短了关断时间并降低了关断损耗;Rg2的作用是防止电源IC在关断时因电流过大而烧坏。图3 加速MOS管关断电路 图腾柱电路也可以加速关断,当电源IC的驱动能力足够时,图2中的电路可以改进为下图这种形式。图4 改善型加速MOS管关断电路 用三极管释放GS电容上的电是很常见的,如果Q1的发射极没有电阻,PNP晶体管导通时栅极与源极之间的电容会短路,可以在最短的时间内实现放电,最大限度地减小关断时的交叉损耗。如图4,因为三极管的存在,栅极和源极之间电容电流不会直接通过电源IC放电,提高了电路可靠性。4、变压器驱动电路加速MOS管的关断为了满足驱动高边MOS管的要求,如图5所示,通常使用变压器驱动器,有时也用于安全隔离。使用R1的目的是抑制PCB板上的寄生电感与C1形成LC振荡,其设计目的是隔离直流,通过交流,同时防止磁芯饱和。图5 高边MOSFET驱动电路声明: 声明:文章来源网络。本号对所有原创、转载文章的陈述与观点均保持中立,推送文章仅供读者学习和交流。文章、图片等版权归原作者享有,如有侵权,联系删除。 来源:硬件笔记本

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习计划 福利任务
下载APP
联系我们
帮助与反馈