文一:
从运动分子簇到连续体:作为开放系统的物质单元
摘要:
我们讨论了描述物质时从离散到连续的转变,从一团质量相等的流动分子开始,到一个非简单流体结束。我们考虑了在空间窗口内分子速度分布的局部仿射近似之外的波动,用于计算一些显著的统计数据。所得到的连续体图片说明了与连续体尺度中的一个点相对应的每个空间窗口中的局部质量变化。从统计学的角度来看,每个物质元素都被认为是一个大正则系综。所谓的C导数解释了宏观到介观的相对运动。当考虑二阶张量时,它们扩展了Truesdell的导数,并在宏观到介观相对运动消失时降为Oldroyd的导数。超过最接近动能的仿射分量的波动被总结为二阶对称张量,其时间变化进入控制从速度波动到热的传递的平衡方程。最后,我们讨论了在当前环境下热力学的基本要素。出现的是非傅立叶型热传递的可能性。这些结果解决了稀疏相动力学的场表示的计算方案,如颗粒材料,以及具有散射分子传输的物体,如流体中的污染物或生物组织中的蛋白质
图:稀疏的相位(特别是小麦的流动)和放大的空间窗口。
图:空间窗口中与点相关的分子簇𝑥 在连续体中。箭头证明了这种簇团的奇异速度𝑤 以及平均速度𝑣 。
文二:
基于连续介质力学的沥青混凝土力链三维识别与表征
摘要:
基于颗粒力学,已经对颗粒组件内发生的力链进行了广泛的研究;然而,由于缺乏识别标准,沥青混凝土中粗骨料分散在粘弹性沥青砂浆基体中,对其识别和表征的研究仍然非常有限。提出了一种基于三维有限元模拟的方法,从连续介质力学的角度识别和表征沥青混凝土的力链。沥青砂浆基体内的应力集中区被视为粗集料之间的主要荷载传递区。MLR是通过局部检测方法确定的,该方法检查沥青砂浆元件在其局部区域是否受到高度应力。然后,如果发现其有效接触面积,即与骨料单元共享节点的沥青砂浆单元同时包含MLR,则确定荷载传递骨料,从而能够进行力链识别。测定了几种三维沥青混凝土细观结构中的压缩力链,并对其进行了定量表征。结果表明,该方法能有效地识别沥青混凝土中的力链,并能利用其特征对骨料骨架进行定量评价。
图:通过RBAG方法建立沥青混凝土细观结构的概念过程。
图:沥青混凝土的中尺度有限元模型。
图:提出的局部检测方法的流程图。
图:力链识别流程图。
图:沥青混凝土的次要主应力分布:(a)沥青砂浆;(b) 粗骨料;(c) 沥青混凝土的部分,其中骨料和可能传递高压缩力的几组骨料之间的一些高应力区域被标记。
图:次要主应力和潜在压缩力链的方向。
图:不同次主应力的 MLR 累积百分比。
图:沥青混凝土细观结构的几何接触点。
文三:
弹塑性颗粒随机组装中接触粘附的数值模拟
摘要:
粉末压块抗拉强度性能的预测仍然是一个重要的工业问题。特别地,粉末压实过程的主要问题之一是压块的失效。事实上,一些粉末压块在压实过程中会出现裂纹。这种缺陷是由于局部的拉伸或剪切应力,例如接近几何奇点而发生的。它们还与粉末在颗粒之间的接触处产生足够粘附力以承受拉伸应力的能力有关。因此,裂纹是在颗粒尺度及以下,直至分子尺度上发生的现象的结果。为了帮助理解这一机制,使用有限元软件套件Abaqus开发了一种称为多粒子有限元法的粒子尺度数值方法(Abaqus 6.14 Documentation,2016)。这种方法允许对理想化为弹塑性球体组件的颗粒介质的微观结构进行明确建模。使用基于连续介质力学的材料模型,对颗粒进行网格划分,以充分考虑其变形。使用有限元接触公式来管理颗粒之间的相互作用。在文献的基础上开发了一个多尺度的粘性接触模型,并将其实现为多粒子有限元代码。接触模型基于由Pullen和Williamson(1972)开发的粗糙度模型加权的表面能公式。它介绍了一个新的方面,即在外部机械载荷作用下粘附力的发展,这与冷压实过程相一致。然后将该模型应用于预测球体堆积的细观特性,即其对任何类型的机械应力的响应,特别是强偏应力路径。这种方法旨在帮助开发用于粉末压实过程建模的有效连续体模型。
图:根据本接触模型的粘合剂接触的加载/卸载顺序:(a)表面正在接近;(b) 建立了接触,随着微凸体的变形而形成粘附;(c) 达到最大压缩法向应力;(d) 卸载是有粘性的。
图:有限元网格用于验证所开发的接触定律。
图:用于研究理想颗粒填料平均力学性能的数值组合。基本体积显示为深灰色,用于应用边界条件的周围层显示为浅灰色。
图:确定屈服面的方法。
图:与相对密度的各向同性载荷相关的屈服面的确定。
文四:
GeoTaichi:一个用于多尺度地球物理问题的Taichi高性能数值模拟器
摘要:
本研究介绍了GeoTachi,一种开源的高性能数值模拟器,旨在解决多尺度地球物理问题。通过利用Taichi并行语言的强大功能,GeoTaichi最大限度地利用了多核CPU和GPU架构上的现代计算机资源。它为离散元法(DEM)、材料点法(MPM)和耦合材料点离散元法提供了稳健可靠的模块。这些模块能够在纯Python中实现的同时高效地解决大规模问题。GeoTachi的设计理念专注于创建一个可读、可扩展和用户友好的框架。本文重点介绍了MPDEM的耦合过程、编码结构以及GeoTachi的最重要特征。为了验证GeoTachi的有效性和稳健性,我们进行了严格的基准测试。此外,将GeoTachi的性能与该领域的类似软件工具进行了比较,强调与现有替代方案相比,计算效率和内存节省都有显著提高。
图:物质点法的计算域。
图:圆形和三角形之间相互作用面积的计算。(a)中的阴影面积等于(b)、(c)和(d)中阴影面积的总和。当逆时针方向被视为正时,(b)和(c)的面积为正,而(d)的面积则为负。
图:耦合材料点离散元法中的接触检测。黄色和灰色虚线圆分别显示DEM粒子和材质点的截止距离。
图:邻近搜索(a)DEM和(b)MPDEM。相邻的单元格用粗线在视觉上高亮显示,离散粒子和材质点的截止距离分别用黄色和灰色圆圈表示。
图:(a) 散列网格上随机定位的粒子的图示,以及(b)粒子单元列表和(c)压缩的潜在联系人列表的构建。
图:物质点耦合离散元法的计算流程。
图:显示颗粒撞击颗粒床过程的2D切片。
图:包含600,000个粒子的堆形成: (a)初始状态和(b)最终状态。
图:颗粒柱坍塌和冲击堆叠立方体盒子的初始几何形状和垂直应力分布。
图:不同时间条件下倒塌颗粒柱和堆叠立方体盒之间的相互作用。
图:所选方框的(a)平移和(b)旋转的演变。
文五:
颗粒材料中声传播的孔隙弹性模型
摘要:
颗粒材料的动力学研究已经进行了多年,然而,它们最近因其对声激励的独特响应而引起人们的关注,从而在声学、噪声和振动控制中具有潜在的应用。例如,沸石和活性炭等多孔颗粒已被应用于增强扬声器在低频下的性能。对这些材料的声学行为的可靠预测需要准确的表征,这可以从实际的角度通过进行驻波管测量来实现。但是,为了帮助解释这些类型的测量,在本文中,将Biot-poro弹性理论应用于描述堆叠在圆柱形样品支架中的颗粒中的声音传播,如驻波管中的声音。本工作的独创性是对Biot模型的扩展,以适应在多个层面上多孔的颗粒活性炭(GAC)等材料,以及结合杨森模型和赫兹接触理论预测的颗粒材料的深度相关刚度的有限差分(FD)实现。将模型预测与GAC和轻质玻璃气泡堆的测量结果进行了比较,模拟结果与材料吸收的测量特征准确匹配。
图:矩形计算域的图示。蓝色的上部表示颗粒材料上方的空气柱,由矩形的下部表示。
图:不同固相边界条件下FD模拟与一维分析模型预测的比较。
图:(a) 带有原始样品支架的阻抗管;以及(b)具有丙烯酸样品支架的阻抗管。
图:测试系统的示意图。
图:具有拟合参数的刚性模型预测与标称颗粒厚度的吸声系数测量平均值的比较:(a) 10毫米;(b) 20毫米;(c) 30毫米;(d) 40毫米;(e) 50毫米;(f) 60毫米;(g) 70毫米(小时)80毫米。