首页/文章/ 详情

IAV:采用移动粒子半隐式(MPS)方法模拟电机中的自由流动冷却液的技术

21天前浏览2095

摘要

IAV公司对电机中的冷却剂流动进行了模拟,采用了一种新的模拟技术,即移动粒子半隐式(MPS)方法。这种新颖的方法可以更好地预测自由表面的流动、喷雾、射流冲击或液滴行为,以及早期设计过程中的冷却剂流动。此外,还可以计算冷却剂流动的局部换热系数(HTC)。由于这种计算是基于普通平面流动的,因此与实验和分析数据相比,已经开得到了改进。有了这个改进的HTC相关性,可以更好地评估不同的电动机冷却方案。由于模型设置和模拟时间较短,IAV在早期设计迭代中使用MPS来改善电动机冷却系统并减少原型测试。

导言

在电机冷却概念的设计过程中,需要在没有测试的情况下估算不同概念的效率。当今发展的一个目标是最大化电动驱动器的扭矩和功率密度。由于外表面与电机损耗的比例越来越低,使用传统冷却系统(例如水套)很难冷却干燥运行的电机。因此,冷却剂液体 位于电机内部的湿式冷却概念更受关注。然而,湿式运行机器的冷却剂流动几乎无法预测,这是由于自由表面流动、高转速和空气间隙中的液滴。因为模拟冷却剂流动非常复杂的,所以昂贵的原型制作和测试是不可避免的。已建立的计算流体动力学(CFD)代码基于流场的欧拉规范。因此,需要创建一个体积网格来离散化流动区域的几何形状。很大的缺点是难以跟踪流动的自由表面和液滴的产生,以及由快速变化的几何边界引起的问题,这需要重新划分。新的模拟技术的目的是避免时间和成本密集型的测试和可接受的计算时间和准确性。通过这种方式,可以分析和比较不同的冷却概念,并在早期设计阶段找到理想的应用。

热传导系数计算

纳维-斯托克斯方程描述了粘性流体的运动。这些方程在移动粒子半隐式(MPS)方法的拉格朗日公式中求解。流体由与其相邻粒子相互作用的粒子离散化,这些相邻粒子由核函数确定。与传统的计算流体动力学(CFD)相比,不需要体积网格。物理特性,如速度、位置或者压力,都保存在每个粒子中。[1]

现在可以计算来自强制对流的热传导系数(HTC或ℎ,单位为W/m²/K)。壁面向流体的热通量𝑞为

其中 𝑇 是温度。对于靠近壁面的每个粒子,使用基于两个平板之间平面库埃特流动的普通努塞尔数(Nusselt)𝑁𝑢相关性计算HTC。然后,对于层流𝑅𝑒𝑥 > 10^5),适用

对于湍流(𝑅𝑒𝑥 > 10^5),适用

其中

是流体的普朗特数,

是局部雷诺数,𝜌是密度,𝜈是运动粘度,𝑐𝑝是比热,𝜆是热导率,𝑣是切向粒子速度,𝑥是粒子在壁上的运动长度。然后通过以下公式计算局部HTC

对于近壁粒子。[2]与平面流动模拟的分析数据相比,这种方法提供了可接受的结果,如图1所示。[3]

图1:平面流(左)的仿真和平面流(右)[3]的理论和仿真结果之间的HTC计算比较

对于不同的流动模式,如管道流或喷射冲击,基本的热传导系数(HTC)计算会导致解析和模拟结果之间存在显著差异,如图2所示。为了使用MPS评估不同的电动机冷却概念,需要进行更好的HTC计算。

图2:管道流量模拟(左),理论与模拟结果的HTC计算比较(右)

热传导系数的改进和流程

通常情况下,湿式电机的流体流动可以分为三种不同的流动模式:平板流动、管道流动以及喷淋或射流冲击(见图3)。如上所述,当前的热传导系数计算是基于平板库埃特流动。新方法

该方法包括不同流动模式及其努塞尔特相关性的组合,这些相关性与影响因素 𝛼、𝛽、𝛾 相结合。为了确定这些值的确切数值和依赖关系,IAV进行了许多不同的流体模拟,使用MPS进行比较它们的结果与实验或分析数据。

图3:湿式电动机内部的不同流动模式

调整后的努塞尔特相关性给出了更好的模拟结果,现在这些结果更接近实验或分析数据。然而,热传导系数的计算仍然是保守的。这意味着模拟结果仍然低于参考值,从而可以避免过于乐观地评估。改进的计算与实验或分析数据的比较示例如图4所示

图4:改进后的HTC仿真与实验或分析结果的比较。左:管流,右:从[4]开始的喷射冲击

通过改进的传热系数(HTC)计算方法,MPS特别适合于模拟湿式机器的流动。由于模型设置的快速速度和相对较低的计算时间,MPS在IAV被用于新电机的早期开发。图5显示了使用MPS进行热模拟的主要过程。

图5:使用MPS进行热模拟的IAV过程

在开始,至少创建了一个电机的概念CAD模型。然后,可以将几何体导出为STL格式的简化多边形模型。根据颗粒大小、最大速度、模型复杂性和所使用的硬件,流体模拟通常只需要几个小时的计算时间。这些结果,如传热系数,可以投影到表面上,然后输出。这种所谓的地图,然后可以再次作为一个(热)边界条件,在进一步的热传导模拟,如三维有限元分析(FEA)或一维热网络。通过这些模拟,可以详细地识别和分析热点,从而通过设计改进来减少热点。由于仿真时间较短,在开发早期可以进行多次迭代,一方面可以更好地预测电机的热利用,另一方面可以全面减少热利用。

除了热分析外,还可以评估更多的冷却液流体流动特性。目标总是减少冷却系统的压力降。在MPS下,压力可以通过显式或隐式计算,因此可以通过优化通道的几何形状来分析和减少入口和出口之间的差异。此外,还可以计算出在模拟过程中为确保运动部件的规定速度所必需的扭矩。因此,例如,如果一个齿轮处于油浴中,该流体会在齿轮上引起额外的摩擦扭矩,从而降低其效率。此外,还可以预测电机气隙中油的影响。作为一个例子,如图6所示。

图6:电机内油量增加引起的摩擦转矩

值得注意的是,旋转部件的摩擦扭矩几乎呈线性增加,随着时间的增加和电机内的油量增加。由此产生的约1 kW功率损失相对较高,主要来自轴承中的油和主要位于气隙中的油。外转子的几何形状与光滑表面不同,如图6所示。模拟模型中的几何形状更为结构化,这导致油滴的接触面积增大,从而产生更大的摩擦扭矩。由于采用了MPS,可以早期观察到这些不良影响,并通过对电机设计的更改来减少它们。

另一个用例是复杂系统的润滑仿真,如浸润润滑齿轮。图7显示了喷溅润滑的实验和仿真的比较。使用1毫米的实用颗粒尺寸,可以观察到油的卷入和溅起,与实验结果非常吻合。该模拟不依赖于实验中必要的经验因素,这些因素在类似的模拟方法中是必需的。通常,它们的确定需要高(实验)成本和努力。MPS仅使用已知的物理流体属性,如粘度、表面张力系数或流体与固体之间的接触角,这些属性对许多材料已经知道。

图7:齿轮飞溅润滑实验[5](左)与仿真(右)对比

结论

IAV公司使用动态粒子模拟(MPS)打开了在早期开发过程中以前难以实现的流体模拟领域。由于传热系数(HTC)计算的改进,MPS可以特别用于湿式运行电机的冷却模拟。此外,由于流体摩擦造成的损失可以提前估计,并可以通过改进设计来最小化。特别是,可以非常好地模拟和分析自由表面流动的问题。

作者:Dipl.-Ing. Sebastian Jugelt

Development Engineer,System Development E-Traction,IAV GmbH, Germany

REFERENCES

[1] S. KOSHIZUKA and Y. OKA, “Moving particle semi-implicit method for fragmentation of incompressible fluid”, Nuclear Science and Engineering, Vol 123, pp. 421–434, 1996

[2] PROMETECH SOFTWARE, “Particleworks Theory Manual. Release 6.2.0”, 2019

[3] PROMETECH SOFTWARE, “Validation of heat transfer coefficient calculated by

Particleworks”, 2018

[4] STEVENS, J. and WEBB, B. W. “Local Heat Transfer Coefficients Under an Axisymmetric,Single-Phase Liquid Jet.” ASME, J. Heat Transfer, 113(1): 71–78, 1991

[5] LIU, H.; JURKSCHAT, T.; LOHNER, T.; STAHL, K. “Detailed Investigations on the Oil Flow in Dip-Lubricated Gearboxes by the Finite Volume CFD Method”, Lubricants, 6, 47, 2018

免责声明:以上观点仅代表作者个人看法,与本平台无关。文档中文版权归电动新视界平台所有,英文文档版权归IAV公司所有,分享本文仅供学习参考,切勿用于商业用途,如涉及版权问题,请第一时间告知我们删除,非常感谢。
来源:电动新视界
ACTSystem湍流UGUM理论电机材料ParticleWorks管道
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2024-05-11
最近编辑:21天前
电动新视界
新能源汽车相关技术信息分享,新...
获赞 86粉丝 88文章 1345课程 0
点赞
收藏

作者推荐

未登录
还没有评论

课程
培训
服务
行家

VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈