首页/文章/ 详情

强度丨浙大张泽院士顶刊:航空发动机涡轮叶片镍基单晶合金950/1050℃疲劳断裂行为原位SEM研究

4月前浏览653
         

研究背景

           

镍基单晶高温合金由于具有较高的耐温性和抗疲劳蠕变性而被用作燃料涡轮发动机叶片材料,被形象地称为“皇冠上的明珠”。叶片作为发动机的核心部件,经常受到反复启停造成的低周疲劳损伤。研究证明疲劳失效是飞机涡轮叶片失效的主要原因之一。在周期性疲劳荷载作用下,裂纹占疲劳破坏从萌生到扩展的整个过程的80%以上;而从根本上说,材料失效是由微观结构不稳定引发的,这就要求我们在微观尺度上深入分析疲劳载荷作用下裂纹萌生扩展行为。

▲ 航空发动机结构及材料分布

               

原位疲劳技术

                   

近年来由于微观分析设备的改进,原位高温力学测试系统为材料分析引入了新的手段,原位技术能够有效的观测裂纹萌生和扩展的微观信息,可以将材料的实际使用条件和显微结构的组织变化研究一体化地结合起来,把性能和结构一一的对应起来。但镍基单晶高温合金苛刻的服役条件使得原位研究中温度场与应力场之间的耦合成为难点。目前原位SEM疲劳裂纹研究都是在低于1000℃的温度下进行的,而镍基单晶高温合金的最高使用温度可达1100℃。因此,提高原位设备观测温度接近镍基单晶高温合金服役条件对镍基单晶高温合金的高温疲劳变形行为进行研究很有必要。

▲ 原位疲劳试验系统

▲ 叶片服役温度和应力分布                

               

研究结果分析

                   

针对以上问题,利用原位高温疲劳测试装置克服了以往原位研究1000℃以上难以清晰成像的难点,以第二代镍基单晶高温合金为对象,观测总结了1050℃下镍基单晶疲劳微裂纹的萌生和扩展机理。

▲1050℃下疲劳裂纹萌生过程原位观察(a) 0次循环;(b) 60个周期;(c) 72个周期;(d) 81个周期

               

▲ 1050℃下疲劳裂纹扩展过程原位观察(a) 82次循环;(b) 92个周期;(c) 96个周期;(d) 103个周期;(e) 108个周期; (f) 109个周期

▲ 1050℃时疲劳裂纹扩展速率曲线:裂纹路径对裂纹扩展速率的影响        

▲1050℃疲劳裂纹萌生过程中微观组织变形机理(a) γ相位错;(b) γ/γ′界面位错网络;(c-d)应力集中导致裂纹萌生        
结果表明,1050℃时,平行于加载方向的γ相和垂直于加载方向的γ/γ′界面出现疲劳裂纹撕裂,呈现垂直于加载轴的Stage II模式,加速阶段沿(111)[0-11]转变为Stage I模式。裂纹萌生阶段材料亚表面组织缺陷是疲劳裂纹产生的主要原因。在裂纹扩展阶段内部缩孔对裂纹扩展路径也有很大的影响,是裂纹路径弯曲和分叉的主要原因。在裂纹萌生和快速扩展阶段,裂纹行为对裂纹扩展速率没有明显影响。100 μm以下疲劳微裂纹的扩展速率在稳定扩展阶段波动较大,这与裂纹行为密切相关。        
       

该工作更深入地提供了对1000℃以上高温低周疲劳下镍基高温合金的实时变形行为的理解,该研究成果为高温合金材料的损伤机理的研究开辟了新方法,为航空发动机涡轮叶片在苛刻使役的寿命预测奠定了基础。

来源:两机动力先行
疲劳断裂航空裂纹材料试验
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2023-12-31
最近编辑:4月前
两机动力先行
其它 聚焦航空发动机/燃气轮机关键技术...
获赞 85粉丝 59文章 337课程 0
点赞
收藏
未登录
还没有评论

课程
培训
服务
行家

VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈