首页/文章/ 详情

【新文速递】2025年11月14日复合材料SCI期刊最新文章

1小时前浏览21
 
   

今日更新:Composite Structures 3 篇,Composites Part A: Applied Science and Manufacturing 4 篇,Composites Part B: Engineering 3 篇,Composites Science and Technology 1 篇

Composite Structures

Finite element modeling and an alysis of woven roving mat reinforced shape memory polymer composite bar under torsion

Md Saad Hussain Barsania, K.V. Nagendra Gopal

doi:10.1016/j.compstruct.2025.119849

扭转作用下形状记忆聚合物复合棒材编织粗纱垫的有限元建模与分析

The finite element an alysis of a thermally stimulated woven roving mat (WRM) reinforced shape memory polymer composite (S MPC) bar under torsion is presented in this paper. A rectangular bar made of an in-house realized S MPC consisting of layers of shape memory polymer (S MP) and WRM fibers is subjected to a thermomechanical cycle that includes heating the specimen to a high temperature (Th) above the glass transition temperature (Tg), applying an angular twist, and then cooling the deformed configuration to a low temperature (Tl), followed by unloading to achieve a temporary shape, and finally reheating to regain the original shape. A thermodynamically consistent 3D constitutive model for thermoset S MPs is implemented numerically to model the stress–strain behavior of the S MP. Following initial validation studies, numerical simulations were performed to obtain and quantify the relative shape memory behavior of an in-house synthesized S MP and WRM-reinforced S MPC in terms of shape fixity and recovery parameters for different angular twists. The results obtained show that the addition of a s mall volume fraction of WRM fibers significantly improves the mechanical performance and accelerates the shape recovery while reducing the shape memory behavior. This is significant in the use of reinforced S MPC for structural applications.

本文介绍了在扭转作用下对热刺 激编织粗纱毡(WRM)增强形状记忆聚合物复合材料(S MPC)棒进行有限元分析。采用由内部研发的形状记忆聚合物(S MP)层和 WRM 纤维层组成的矩形 S MPC 棒,对其施加热机械循环,包括将试样加热至高于玻璃化转变温度(Tg)的高温(Th),施加角扭转,然后将变形构型冷却至低温(Tl),卸载以获得临时形状,最后重新加热以恢复原始形状。采用热力学一致的三维本构模型对热固性 S MP 进行数值模拟,以模拟 S MP 的应力 - 应变行为。在初步验证研究之后,进行了数值模拟,以获取并量化内部合成的 S MP 和 WRM 增强 S MPC 在不同角扭转下的相对形状记忆行为,包括形状固定性和恢复参数。实验结果表明,添加少量体积分数的 WRM 纤维显著提高了机械性能,加快了形状恢复速度,但降低了形状记忆行为。这对于增强型形状记忆聚合物复合材料在结构应用中的使用具有重要意义。


Data-based damage evolution an alysis of chopped carbon fiber sheet molding compound composite

Kaifeng Wang, Zhengyu Ma, Li Yang, Hongye Zhang, Zhilin Sun, Jingjing Li

doi:10.1016/j.compstruct.2025.119857

基于数据的短切碳纤维板材成型复合材料损伤演化分析

The study investigates the damage evolution mechanis ms in chopped carbon fiber sheet molding compound (CF-S MC) composites subjected to uniaxial tensile loading through a data-driven approach integrating micro-X-ray computed tomography (μXCT) and multivariate correlation an alysis. Initially, μXCT imaging provided comprehensive in-situ characterization of internal microstructural damage processes, identifying fiber orientation, fiber volume fraction, and loading conditions as critical variables influencing crack propagation. Subsequently, a quantitative damage evolution prediction model was developed. A data-based approach was employed to translate complex multi-variable nonlinear relationships into a single-variable ana lysis. The model introduces a Damage Evolution Index (DEI), effectively capturing the influence of identified critical factors on crack growth rate. Validation using independent tensile testing datasets confirmed the accuracy and generality of the proposed prediction framework, demonstrating its potential applicability in advanced structural health monitoring and damage prognosis for composites

采用微x射线计算机断层扫描(μXCT)和多变量相关分析相结合的数据驱动方法,研究了短切碳纤维薄板模压复合材料(CF-S MC)在单轴拉伸载荷作用下的损伤演化机制。最初,μXCT成像提供了内部微结构损伤过程的综合原位表征,确定了纤维取向、纤维体积分数和加载条件是影响裂纹扩展的关键变量。在此基础上,建立了损伤演化定量预测模型。采用基于数据的方法将复杂的多变量非线性关系转化为单变量分析。该模型引入了损伤演化指数(DEI),有效地捕捉了识别出的关键因素对裂纹扩展速率的影响。使用独立的拉伸测试数据集进行验证,证实了所提出的预测框架的准确性和通用性,证明了其在复合材料高级结构健康监测和损伤预测中的潜在适用性


Improving energy absorption in structures using tubular TPMS structure optimization and printing strategies

Hengyu Zhang, Jun Zhao, Chao Xu, Ruqing Huo, Qingsong Niu

doi:10.1016/j.compstruct.2025.119820

利用管状TPMS结构优化和打印策略提高结构吸能

This study proposes novel heteromorphic triply periodic minimal surface (TPMS) structures fabricated via selective laser melting (SLM). Double-layer circular tubes and tubular TPMS fillers, as well as filled structures and integrated printing structures, were respectively prepared. Quasi-static compression experiments validated finite element an alysis (FEA) accuracy, demonstrating excellent consistency. The validated FEA model assessed crashworthiness of tubular TPMS, filled structures, and integrated printed designs across varying relative densities. Results indicate integrated printed structures achieve the highest specific energy absorption (SEA), surpassing filled structures and outperforming standalone tubular TPMS. Heteromorphic TPMS uniquely combines low initial peak force (Fi) with elevated stress plateaus at equivalent relative densities, enhancing both energy absorption and safety. Multi-morphology TPMS enables gradient energy absorption, reducing Fi at identical compression distances. Monolithic integration improves structural stiffness and minimizes force fluctuations during compression, significantly enhancing crash resistance and safety. Remarkably, integrated printing improves SEA by up to 85.1% and crush force efficiency (CFE) by 46.6% versus benchmark structures.

本研究提出了一种新的异型三周期最小表面(TPMS)结构,该结构是通过选择性激光熔化(SLM)制备的。分别制备了双层圆管和管状TPMS填料,以及填充结构和集成印刷结构。准静态压缩实验验证了有限元分析(FEA)的准确性,证明了良好的一致性。经过验证的有限元模型评估了不同相对密度下管状TPMS、填充结构和集成打印设计的耐撞性。结果表明,集成印刷结构具有最高的比能吸收(SEA),超过填充结构,优于单独的管状TPMS。异型TPMS独特地结合了低初始峰值力(Fi)和等效相对密度下的高应力平台,增强了能量吸收和安全性。多形态TPMS可以实现梯度能量吸收,在相同的压缩距离下降低Fi。整体集成提高了结构刚度,最大限度地减少了压缩过程中的力波动,显著提高了抗碰撞性和安全性。值得注意的是,与基准结构相比,集成印刷将SEA提高了85.1%,粉碎力效率(CFE)提高了46.6%。


Composites Part A: Applied Science and Manufacturing

A degradation-informed phase-field model for matrix-dominated high-cycle fatigue in 3D composite laminates

Harshdeep Sharma, Akhilendra Singh

doi:10.1016/j.compositesa.2025.109377

 

三维复合材料层合板基体主导高周疲劳的退化通知相场模型

This work presents a phase-field framework for modeling matrix-dominated high-cycle fatigue (HCF) in three-dimensional fiber-reinforced composite laminates. The model captures intralaminar damage mechanis ms such as matrix splitting and shear-driven cracking under high-cycle loading, with crack propagation primarily aligning along fiber directions and no significant fiber rupture observed. A tailored anisotropic fatigue degradation formulation is proposed, coupled with an adaptive cycle-jump strategy termed Degradation-Informed Constant Load Accumulation (D-CLA), which significantly improves computational efficiency. The fatigue history variable is defined using degraded strain energy density to enhance physical consistency. Numerical studies on both two- and three-dimensional laminate configurations demonstrate the framework’s predictive capability in capturing fatigue crack growth and S–N behavior, showing strong agreement with literature and experimental trends.

本文提出了一种用于模拟三维纤维增强复合材料层合板中以基体为主的高周疲劳(HCF)的相场框架。该模型能够捕捉到在高周载荷作用下层内损伤机制,如基体开裂和剪切驱动裂纹扩展,裂纹扩展主要沿纤维方向,且未观察到明显的纤维断裂。提出了一个定制的各向异性疲劳退化公式,并结合了一种称为退化信息恒定载荷累积(D-CLA)的自适应循环跳跃策略,显著提高了计算效率。疲劳历史变量通过退化应变能密度来定义,以增强物理一致性。对二维和三维层合板结构的数值研究证明了该框架在捕捉疲劳裂纹扩展和 S-N 行为方面的预测能力,与文献和实验趋势高度一致。


Energetic deposition of Polymer-Based High-Entropy composite film for aerospace applications

Yifan Zhang, Shunian Chen, Qian Li, Shengqi Dai, Qingyan Hou, Pan Pang, Lin Chen, Bin Liao

doi:10.1016/j.compositesa.2025.109425

 

航空航天用聚合物基高熵复合薄膜的高能沉积

To address the degradation challenges faced by spacecraft-exposed polymers from atomic oxygen (AO) erosion, radiation damage, and electrostatic hazards (ESC/ESD), we fabricated innovative (TiAlCrSiV)Nx/TiAlCrSiV-CPI(PEI) composite films with multifunctional durability. Through advanced spectroscopy and microstructural characterization, the engineered interface demonstrates synergistic chelation-crosslinking interactions that optimize interfacial cohesion and fracture toughness. The exceptional AO resistance stems from the cubic high entropy nitride layer acting as an effective diffusion barrier, achieving ultralow erosion yield values (4.91 ± 0.12 and 4.38 ± 0.16 × 10-26 cm3 atom−1). Radiation tolerance was verified through N+ irradiation tests, revealing slight dislocation and lattice swelling (0.6 %) in the stabilized nanocrystalline. In addition, the customized composition and architecture exhibit sufficient electrostatic dissipation capability to resolve potential ESC/ESD issues. This fabrication strategy integrating energetic ion beam with high entropy interfacial regulation presents a viable solution for developing next-generation spacecraft materials capable of withstanding space synergistic effects.

为了解决航天器暴露的聚合物面临的原子氧(AO)侵蚀,辐射损伤和静电危害(ESC/ESD)的降解挑战,我们制造了具有多功能耐久性的创新(TiAlCrSiV)Nx/TiAlCrSiV- cpi (PEI)复合薄膜。通过先进的光谱和微观结构表征,工程界面显示出协同螯合交联相互作用,优化了界面凝聚力和断裂韧性。优异的AO阻力源于立方高熵氮化层作为有效的扩散屏障,实现了超低的侵蚀屈服值(4.91 ± 0.12和4.38 ± 0.16 × 10-26 cm3原子−1)。通过N+辐照试验验证了纳米晶的耐辐照性,发现稳定的纳米晶中有轻微的位错和晶格膨胀(0.6 %)。此外,定制的结构和结构具有足够的静电耗散能力,可以解决潜在的ESC/ESD问题。这种将高能离子束与高熵界面调控相结合的制造策略为开发能够承受空间协同效应的下一代航天器材料提供了一种可行的解决方案。


Synergistic regulation of mechanical and physical properties in SiC nanowire dispersion-strengthened copper via core–shell coating

Lu Han, Zetao Mou, Yuan Huang, Yongchang Liu, Zumin Wang

doi:10.1016/j.compositesa.2025.109429

碳化硅纳米线分散增强铜的核壳涂层对力学和物理性能的协同调节

A copper (Cu) matrix composite reinforced with discontinuous SiC nanowires (SICNWs) was developed through sintering of core–shell Cu-coated SICNW powders followed by high-pressure torsion processing. Through this process, a uniform dispersion of 1.0 vol% SICNWs within the Cu matrix was successfully achieved, and these individual nanowires are distributed across the grain boundaries (GBs) and embedded within the grain interiors, which significantly improved the interfacial bonding strength of the composite. The as-prepared composite exhibited exceptional comprehensive properties: yield strength ∼ 484 MPa, ultimate tensile strength ∼ 499 MPa, electrical conductivity ∼ 82 % IACS (International Annealed Cu Standard), and thermal conductivity ∼ 270 W/(m·K). Microstructural ana lysis revealed that the dispersed SICNWs effectively pinned GBs, and thus can inhibit the migration of GBs under heat treatment, significantly improving the thermal stability. This work provides a novel paradigm for designing fiber-reinforced metal matrix composites that achieve a well-balanced combination of mechanical, thermal, and electrical properties.

采用核壳包覆碳化硅纳米线烧结并进行高压扭转处理的方法,制备了不连续碳化硅纳米线增强铜基复合材料。通过该工艺,成功地实现了1.0 vol%的SICNWs在Cu基体内的均匀分散,并且这些单独的纳米线分布在晶界(GBs)上并嵌入晶粒内部,显著提高了复合材料的界面结合强度。和综合表现出特殊的综合属性:屈服强度 ∼  484 MPa,极限抗拉强度 ∼  499 MPa,导电性 ∼ 82 % IACS(国际退火铜标准),和热导率 ∼ 270 W / (m·K)。显微组织分析表明,分散的SICNWs有效地固定了GBs,从而抑制了GBs在热处理过程中的迁移,显著提高了热稳定性。这项工作为设计纤维增强金属基复合材料提供了一种新的范例,这种复合材料可以实现机械、热学和电学性能的良好平衡。


Interfacial optimization strategy of local point relax facilitates synergistic enhancement of strength and toughness in 2.5D SiCf/SiC composites

Zhaoliang Guo, Hongyun Luo, Qian Chen, Jie Cui, Jiaping Zhang, Jing Chen, Fule Qin, Chaoli Ma

doi:10.1016/j.compositesa.2025.109430

 

局部点松弛的界面优化策略有利于2.5D SiCf/SiC复合材料强度和韧性的协同增强

Continuous SiC fiber reinforced silicon carbide matrix (SiCf/SiC) composites have received considerable attention because of their high strength, low density and excellent high-temperature resistance. However, the mechanical performance potential of 2.5-dimensional (2.5D) SiCf/SiC composites remains limited by interfacial property challenges. This study propose an interfacial optimization strategy that tunes local bonding and residual thermal stress (RTS). The spatial distribution of RTS and interfacial bonding behavior was examined using finite element model (FEM) simulations, scanning electron microscope (SEM), fiber push-in tests and Raman spectroscopy. The optimized interphase improved fracture toughness by 277% and flexural strength by 34%, demonstrating the effectiveness of the approach in achieving concurrent improvements in toughness and strength. The mechanis ms responsible for these enhancements were clarified through signal ana lysis of acoustic emission (AE) monitoring and fracture morphology examination. Local point relaxation of the interface and RTS adjustment maintained efficient load transfer and promoted the development of complex three-dimensional stepped crack paths within the SiC matrix, accompanied by crack deflection at the pyrocarbon (PyC) interface. This design facilitates fibers to bear load from the early stages of deformation and resulted in a substantial increase in strength. This approach provides a simple and energy-efficient route to improve the mechanical performance of ceramic matrix composites.

连续碳化硅纤维增强碳化硅基复合材料(SiCf/SiC)因其高强、低密度和优异的耐高温性能而受到广泛关注。然而,2.5维(2.5D) SiCf/SiC复合材料的力学性能潜力仍然受到界面性能挑战的限制。本研究提出了一种调整局部键合和残余热应力(RTS)的界面优化策略。采用有限元模型(FEM)模拟、扫描电子显微镜(SEM)、光纤推入试验和拉曼光谱分析了RTS的空间分布和界面键合行为。优化后的界面相将断裂韧性提高了277%,弯曲强度提高了34%,证明了该方法在同时提高韧性和强度方面的有效性。通过声发射(AE)监测信号分析和裂缝形貌检查,阐明了这些增强的机制。界面的局部点松弛和RTS调整维持了有效的载荷传递,促进了SiC基体内部复杂三维阶梯裂纹路径的发展,并伴随着焦碳(PyC)界面处的裂纹偏转。这种设计有利于纤维从变形的早期阶段就承受载荷,从而大大提高了强度。该方法为提高陶瓷基复合材料的力学性能提供了一条简单、节能的途径。


Composites Part B: Engineering

Bionic CFRP for extreme applications: from natural structures to high-performance manufacturing

Yu Han, Qihao Xu, Yi-Qi Wang, Hang Gao

doi:10.1016/j.composites b.2025.113193

用于极端应用的仿生CFRP:从自然结构到高性能制造

Biomaterials have evolved over billions of years to develop multiscale structures that are lightweight, high-strength, and multifunctional, providing important insights for the design of artificial composite materials. Bionic design has emerged as an effective way to enhance the performance of carbon fiber reinforced polymer (CFRP). To fully understand the concepts and advantages of the bionic strategy, this review provides an overview of the research advances in bionic CFRP, focusing on the remarkable progress in interlaminar fracture toughness, impact resistance, static load-bearing properties, damping performance, and functional surfaces. The structural features and reinforcement mechanis ms of biological prototypes, such as feathers’ interlocking mechanis m, crustacean exoskeletons’ Bouligand structure, and shells’ “brick-and-mortar” microstructure, have been comprehensively an alyzed to support the development of high-performance bionic CFRP. The extreme complexity of bionic structures, characterized by diverse geometries and multi-scale hierarchical features, poses significant challenges to manufacture. This review systematically summarizes the manufacturing technologies of bionic CFRP, including hot-pressing molding, continuous fiber 3D printing, and laser processing. This review points out the current key issues that need to be addressed urgently and outlines future research directions to facilitate the application of high-performance bionic CFRPs in extreme environments.

生物材料经过数十亿年的发展,已经发展出轻量化、高强度和多功能的多尺度结构,为人工复合材料的设计提供了重要的见解。仿生设计已成为提高碳纤维增强聚合物(CFRP)性能的有效途径。为了充分理解仿生策略的概念和优势,本文综述了仿生CFRP的研究进展,重点介绍了仿生CFRP在层间断裂韧性、抗冲击性、静力承载性能、阻尼性能和功能表面等方面的显著进展。综合分析了生物原型的结构特征和增强机制,如羽毛的互锁机制、甲壳类外骨骼的Bouligand结构和贝壳的“砖瓦”微观结构,为高性能仿生CFRP的开发提供了支持。仿生结构的极端复杂性,以不同的几何形状和多尺度层次特征为特征,给制造带来了巨大的挑战。本文系统地综述了仿生CFRP的制造技术,包括热压成型、连续纤维3D打印和激光加工。本文指出了目前迫切需要解决的关键问题,并概述了未来的研究方向,以促进高性能仿生cfrp在极端环境中的应用。


Development of a novel borax@hydrogel composite for neutron radiation shielding in cementitious composite

Jin Yang, Zhiliang Dong, Ying Su, Bohumír Strnadel, Xunqi Zhao, Yubo Li, Xingyang He

doi:10.1016/j.composites b.2025.113196

 

胶结复合材料中屏蔽中子辐射的新型borax@hydrogel复合材料的研制

Cementitious materials are promising for neutron shielding but are limited by insufficient light elements and a singular shielding mechanis m. Inspired by the hierarchical energy dissipation of natural honeycombs, this study designed and synthesized a novel borax@hydrogel (BSAP) composite to construct a bioinspired hierarchical 'interfacial transition zone (ITZ)–voids–dehydrated hydrogel' shielding network. The BSAP composite is formed through physical cross-linking between borax and the hydrogel matrix. Notably, the BSAP exhibits a multi-state boron distribution, characterized by three distinct forms: free dispersion, physical binding within the hydrogel network, and surface crystalline attachment. Furthermore, borax incorporation does not notably impair BSAP’s water absorption and structural stability. Compared to the blank group, BSAP incorporation enhances cementitious materials’ neutron removal cross-section and shielding efficiency by 324.5% and 317%, respectively, while reducing the half-value layer by 76.4%. The superior performance stems from its honeycomb-mimetic multiscale shielding mechanis ms, including the elastic attenuation and thermal neutron capture effect of the hydrogen-rich and boron-rich ITZ, the path extension effect of hydrogel voids, and the residual strengthening effect of dehydrated hydrogel.

胶结材料是一种很有前途的中子屏蔽材料,但受限于光元素不足和屏蔽机制单一。受天然蜂窝分层能量耗散的启发,本研究设计并合成了一种新型borax@hydrogel (BSAP)复合材料,构建了仿生分层“界面过渡区(ITZ) -空隙-脱水水凝胶”屏蔽网络。BSAP复合材料是通过硼砂和水凝胶基质之间的物理交联形成的。值得注意的是,BSAP表现出多态硼分布,其特点是三种不同的形式:自由分散、水凝胶网络内的物理结合和表面晶体附着。硼砂掺入对BSAP的吸水率和结构稳定性影响不显著。与空白组相比,BSAP的加入使胶凝材料的中子去除截面和屏蔽效率分别提高了324.5%和317%,使半值层减少了76.4%。这种优异的性能源于其蜂窝状的多尺度屏蔽机制,包括富氢和富硼ITZ的弹性衰减和热中子捕获效应、水凝胶空隙的路径延伸效应以及脱水水凝胶的残余强化效应。


Lightweight High-entropy Alloy/N-Doped Carbon Aerogel Composites for High-efficiency Electromagnetic Wave Absorption

Lin Zhu, Xiaoming Duan, Zengyan Wei, Yurui Man, Xiaoxiao Huang, Xingqi Liao, Bo Zhong, Lan Wang, Shaojie Liu, Xiangyu Meng, Liang Ma, Peigang He, Wen Wang, Dechang Jia, Yu Zhou

doi:10.1016/j.composites b.2025.113199

 

高效电磁波吸收的轻质高熵合金/掺n碳气凝胶复合材料

High-entropy alloys are emerging as a compelling class of materials for electromagnetic wave absorption, due to their tunable electronic structures and the synergistic interactions among their diverse components. However, their practical application is often limited by inherent drawbacks such as high density and large dielectric constants, resulting in significant impedance mis match. This study presents a hierarchically structured composite fabricated by directional freeze-drying followed by high-temperature pyrolysis, to enable the in situ formation of HEAs on two-dimensional carbon substrates. The aerogel composites produced boast a notably low density of roughly 41.53 mg/cm3. The optimized FeCoNiCuMn/C aerogel composites display a minimum reflection loss (RLmin) of –65.85 dB and an ultra-wide effective absorption bandwidth (EAB) of 7.36 GHz at a thickness of 2.3 mm with a filler loading of 10 wt%. This represents performance that surpasses most conventional HEA-based absorbers reported to date. Through multiscale characterization and electromagnetic simulation, the dissipation mechanis ms were systematically clarified, which include interfacial polarization, multi-scale conductive networks, and optimized impedance matching. This work provides a viable strategy for designing high-performance HEAs/N-doped carbon electromagnetic absorbers through rational structural engineering.

高熵合金由于其可调谐的电子结构和不同成分之间的协同相互作用,正成为一种引人注目的电磁波吸收材料。然而,它们的实际应用往往受到诸如高密度和大介电常数等固有缺陷的限制,导致严重的阻抗失配。本研究提出了一种分层结构的复合材料,通过定向冷冻干燥和高温热解制备,使HEAs在二维碳衬底上原位形成。所生产的气凝胶复合材料具有明显的低密度,约为41.53 mg/cm3。优化后的FeCoNiCuMn/C气凝胶复合材料在厚度为2.3 mm、填充量为10 wt%时的最小反射损耗(RLmin)为-65.85 dB,超宽有效吸收带宽(EAB)为7.36 GHz。这代表了迄今为止报道的大多数传统hea基吸收剂的性能。通过多尺度表征和电磁仿真,系统地阐明了耗散机制,包括界面极化、多尺度导电网络和优化阻抗匹配。本研究为通过合理的结构工程设计高性能HEAs/ n掺杂碳电磁吸收剂提供了可行的策略。


Composites Science and Technology

High-Performance Epoxy Composites Based on 3D Interconnected Hybrid Filler Network Interface Engineering: Synergistic Enhancement of Thermal and Mechanical Properties

Shuaishuai Zhou, Peiwen Sun, Mingxin Zhong, Shaohua Li, Peng Zhang, Meihong Liao, Peng Ding, Jingjie Dai

doi:10.1016/j.compscitech.2025.111436

 

基于三维互联杂化填料网络界面工程的高性能环氧复合材料:热力学性能的协同增强

The exponential advancement of artificial intelligence technologies has driven a corresponding surge in chip power density. Effective heat dissipation is the key factor restricting their safety and reliability thereby intensifying the demand for advanced thermal management materials. Nevertheless, persistent trade-offs in thermomechanical properties constitute a fundamental bottleneck in the development of high-performance thermal management materials. In this work, epoxy resin composites with three-dimensional (3D) interconnected hybrid filler networks were fabricated by a multiscale cooperative strategy of “freeze-drying, high-temperature carbonization, and in-situ impregnation”. Based on the interface engineering strategy, the morphology synergy between graphene nanosheets and hydroxylated boron nitride nanosheets was utilized to construct an interconnected 3D network. Combined with high-temperature carbonization to eliminate network defects, the synergistic optimization of thermal conductivity and mechanical properties of epoxy composites was successfully achieved. The prepared epoxy composite exhibits an exceptional through-plane thermal conductivity of 3.10 W·m-1·K-1 at a low hybrid filler content of 4.65 wt%, achieving a remarkable 1326% improvement over pristine epoxy. Notably, it retains excellent compressive strength (204 MPa), indicating balanced thermomechanical properties. This work successfully overcomes the long-standing thermomechanical trade-off limitation in composite materials, offering novel design guidelines for next-generation high-efficiency thermal management composites.

人工智能技术的指数级发展带动了芯片功率密度的相应激增。有效的散热是制约其安全性和可靠性的关键因素,从而加大了对先进热管理材料的需求。然而,热机械性能的持续权衡构成了高性能热管理材料发展的基本瓶颈。采用“冷冻干燥-高温碳化-原位浸渍”的多尺度协同策略,制备了具有三维互联杂化填料网络的环氧树脂复合材料。基于界面工程策略,利用石墨烯纳米片和羟基化氮化硼纳米片之间的形态协同作用,构建了一个相互连接的三维网络。结合高温碳化消除网状缺陷,成功实现了环氧复合材料导热性能和力学性能的协同优化。在杂化填料含量为4.65 wt%的情况下,制备的环氧复合材料的通平面导热系数为3.10 W·m-1·K-1,比原始环氧树脂的导热系数提高了1326%。值得注意的是,它保持了优异的抗压强度(204 MPa),表明平衡的热机械性能。这项工作成功地克服了复合材料长期存在的热力学权衡限制,为下一代高效热管理复合材料提供了新的设计指南。



 


来源:复合材料力学仿真Composites FEM
ACTMechanicalSystemInspireSLM疲劳断裂复合材料碰撞非线性通用航空航天电子芯片裂纹材料多尺度人工智能
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2025-11-22
最近编辑:1小时前
Tansu
签名征集中
获赞 12粉丝 6文章 958课程 0
点赞
收藏
作者推荐

【新文速递】2025年10月12日复合材料SCI期刊最新文章

今日更新:Composite Structures 4 篇,Composites Part A: Applied Science and Manufacturing 2 篇,Composites Part B: Engineering 3 篇,Composites Science and Technology 4 篇Composite StructuresLearning the history-dependent material behavior of viscoelastic composites using recurrent neural operatorMin Shen, Sheng Maodoi:10.1016/j.compstruct.2025.119718用递归神经算子学习粘弹性复合材料的历史依赖材料行为Modeling the finite-deformation, history-dependent behavior of heterogeneous viscoelastic composites remains a challenge due to the complex interactions across multiple scales. High-fidelity methods, such as FE2 methods, can capture the detailed physics of composites at mesoscopic scales, but are often computationally prohibitive. In this work, we propose a recurrent neural operator (RNO)-based framework that efficiently captures the multiscale viscoelastic response of composite materials under large strains. Data used for training the RNO model is generated by offline calculation at the level of representative volume element (RVE) and by the use of proper sampling method and neural network architecture, the RNO model is able to predict both the macroscopic stress and the evolution of internal state variables, achieving accurate and physically consistent results. The developed framework preserves key physical properties, such as objectivity and thermodynamic consistency, and enables flexible deployment across different loading rates and resolutions without retraining. The model was further validated through macroscopic examples, confirming the model’s capability to capture complex path-dependent effective responses with high fidelity. This study demonstrates the potential of operator learning to transform multiscale modeling of complex materials, offering an efficient and scalable alternative to conventional approaches.由于多尺度复杂的相互作用,非均质粘弹性复合材料的有限变形、历史依赖行为建模仍然是一个挑战。高保真度方法,如FE2方法,可以在介观尺度上捕获复合材料的详细物理,但通常在计算上是禁止的。在这项工作中,我们提出了一个基于递归神经算子(RNO)的框架,该框架可以有效地捕获大应变下复合材料的多尺度粘弹性响应。用于RNO模型训练的数据是通过代表性体积元(representative volume element, RVE)层面的离线计算生成的,通过适当的采样方法和神经网络架构,RNO模型既能预测宏观应力,又能预测内部状态变量的演化,得到准确且物理一致的结果。开发的框架保留了关键的物理特性,例如客观性和热力学一致性,并且无需重新培训即可灵活部署不同的加载速率和分辨率。通过宏观算例进一步验证了该模型,证实了该模型能够以高保真度捕获复杂路径依赖的有效响应。这项研究展示了操作员学习在转换复杂材料的多尺度建模方面的潜力,为传统方法提供了一种高效和可扩展的替代方案。Damage detection and evaluation in composite laminates using path length between adjacent peaks of AE signal from fiber optic sensorByeong-Wook Jangdoi:10.1016/j.compstruct.2025.119729基于光纤传感器声发射信号相邻峰间路径长度的复合材料层合板损伤检测与评价A low-velocity impact is one of the events that has a critical effect on the safety of composite laminated structures. This paper addresses the difficulty of detecting invisible damages induced by an impact in order to prevent structural failures. Composite flat plates were prepared for impact experiments, and acoustic emission signals were measured by fiber Bragg grating sensors. Firstly, the differences in signal characteristics in the intact and damaged cases were investigated. For intact cases, the waveform was symmetrical and the generated signal peaks were uniform. On the contrary, the signals of damaged cases were contaminated by emitted acoustic waves induced from damages. Through signal processing that identifies such differences, damages could be detected. Also, due to the influence of the AE signals from the damage that is generated between each lamina, the peaks tend to occur irregularly in the signal. It means that the number of peaks increased and frequent changes of path length between adjacent peaks occurred in the signals of damaged cases. By quantifying these phenomena, the induced damages were evaluated and validated from experimental results. This paper offers efficient and robust method for measuring delamination of laminated composites using the simple fiber optic sensing system.低速碰撞是影响复合材料层合结构安全的关键事件之一。本文解决了检测由冲击引起的无形损伤以防止结构失效的困难。制备了用于冲击实验的复合材料平板,利用光纤光栅传感器对声发射信号进行了测量。首先,研究了完好和受损情况下信号特征的差异。完整情况下,波形对称,产生的信号峰均匀。相反,受损壳体的信号受到损伤引起的发射声波的污染。通过识别这些差异的信号处理,可以检测到损坏。此外,由于各层之间产生的损伤对声发射信号的影响,信号中的峰值倾向于不规则地出现。这意味着在受损情况下,信号中出现了峰数增加、相邻峰间路径长度频繁变化的现象。通过对这些现象进行量化,从实验结果中对诱导损伤进行评价和验证。本文提出了一种利用简单光纤传感系统测量复合材料分层的有效方法。Residual mechanical properties of GFRP composites from decommissioned wind turbine blades for structural reuseNagesh Ramaswamy, Bhupendra Joshi, Gangbing Song, Y.L. Modoi:10.1016/j.compstruct.2025.119739退役风力涡轮机叶片GFRP复合材料的残余力学性能研究The increasing number of decommissioned wind turbine blades (DWTBs) presents significant environmental and disposal challenges. This study evaluates the residual mechanical properties ofGFRPcomposites extracted from the spar cap of a 1.5 MW GE37 wind turbine blade after 11 years of service.An experimental program was conducted including tensile, compressive, flexural, and short beam shear tests in both longitudinal and transverse directions. Longitudinal specimens retained high tensile strength (621 MPa), compressive strength (372 MPa), and modulus (37.5 GPa), representing 76–96 % of pristine GFRP values.In contrast,the transverse directionspecimen exhibited relatively lower mechanical properties due to the anisotropic nature of the composite material. The characteristic values of the mechanical properties were estimated using the t-distribution method at 80 % and 90 % confidence levels providing a statistically reliable lower bound for conservative and safe design applications. The anisotropic behavior of the composites was clearly observed, reinforcing the importance of fiber orientation in load-bearing applications. These findings confirm the potential for reusing DWTB composites in secondary structural elements, particularly in civil infrastructure applications. By demonstrating retained structural capacity, this study supports circular economy initiatives and provides engineers with the necessary data for integrating recycled composites into sustainable construction practices.越来越多的风力涡轮机叶片退役给环境和处理带来了重大挑战。本研究评估了从1.5 MW GE37风力涡轮机叶片的梁帽中提取的gfrp复合材料在11 年的使用后的残余力学性能。实验程序进行了包括拉伸,压缩,弯曲和短梁剪切试验在纵向和横向。纵向试样保持高抗拉强度(621 MPa)、抗压强度(372 MPa)和模量(37.5 GPa),占原始GFRP值的76 - 96% %。相反,由于复合材料的各向异性,横向试样的力学性能相对较低。力学性能的特征值使用t分布方法在80 %和90 %置信水平上进行估计,为保守和安全设计应用提供了统计可靠的下限。复合材料的各向异性行为被清楚地观察到,增强了纤维取向在承载应用中的重要性。这些发现证实了DWTB复合材料在二级结构元件中的再利用潜力,特别是在民用基础设施应用中。通过展示保留的结构能力,本研究支持循环经济倡议,并为工程师将再生复合材料整合到可持续建筑实践中提供必要的数据。Coarse-grained molecular dynamics study of modulus transition and effects of debonding condition on debonding behavior at fiber-resin interfacesJialiang Li, Zeyu Li, Haiyang Gong, Yujun Li, Jianjun Jiangdoi:10.1016/j.compstruct.2025.119749 纤维-树脂界面模量转变的粗粒度分子动力学研究及脱粘条件对脱粘行为的影响Mechanical performance of fiber-reinforced composites is dictated by stress transfer and energy dissipation within the fiber-resin interphase, governed by its modulus gradient and rate-dependent behavior. However, the coupled influence of interphase thickness and strain rate on these properties, particularly the governing physics of the modulus transition, remains insufficiently characterized. This study employs coarse-grained molecular dynamics simulations to systematically investigate the debonding of a carbon fiber/epoxy interphase across a range of thicknesses (8–20 nm) and velocities (0.00001–0.001 Å/fs). The simulations reveal strong rate dependency: higher velocities suppress polymer chain relaxation, promoting more pronounced irreversible deformation that enhances interfacial strength and toughness. Notably, thinner interphases exhibit heightened sensitivity to loading rate. Their strength increases by 41.7 % over the velocity range, compared to 28.8 % for thicker counterparts, highlighting the pivotal role of chain dynamics. A distinct modulus gradient, originating from nanoconfinement-induced non-uniformities in chain mobility and stress distribution, is observed extending from the fiber surface into the matrix. Based on these findings, an exponential decay model is proposed that accurately captures this modulus profile, providing an essential constitutive input for multiscale modeling. These findings elucidate fundamental failure mechanis ms and offer a theoretical framework for the rational design of tailored interphases for high-performance composites.纤维增强复合材料的力学性能取决于纤维-树脂界面内的应力传递和能量耗散,受其模量梯度和速率依赖行为的支配。然而,界面厚度和应变速率对这些特性的耦合影响,特别是模量转变的控制物理,仍然没有充分表征。本研究采用粗粒度分子动力学模拟系统地研究了碳纤维/环氧树脂界面相在厚度(8-20 nm)和速度(0.00001-0.001 Å/fs)范围内的脱粘。模拟结果表明,高速度抑制聚合物链弛豫,促进更明显的不可逆变形,从而提高界面强度和韧性。值得注意的是,更薄的界面对加载速率的敏感性更高。在速度范围内,它们的强度增加了41.7%,而较厚的同类则增加了28.8%,突出了链动力学的关键作用。一个明显的模量梯度,起源于纳米束缚引起的链迁移率和应力分布的不均匀性,观察到从纤维表面延伸到基体。基于这些发现,我们提出了一个指数衰减模型,该模型可以准确地捕获这种模量分布,为多尺度建模提供必要的本构输入。这些发现阐明了基本的失效机制,并为高性能复合材料定制界面的合理设计提供了理论框架。Composites Part A: Applied Science and ManufacturingPhosphorus-nitrogen synergistic flame retardant system for high-performance polypropylene composites reinforced with recycled wind turbine blade powderPeng Chen, Chunming Zhang, Haowen Sun, Zhilong Pu, Shuangqiao Yang, Yuan Liudoi:10.1016/j.compositesa.2025.109340 再生风力发电机叶片粉末增强高性能聚丙烯复合材料的磷氮协同阻燃系统Recycling decommissioned wind turbine blades (WTBs) as reinforcing fillers in polypropylene (PP) composites offers a sustainable solution for WTB waste management. However, the intrinsic ‘wick effect’ of WTB particles severely compromises the flame retardancy of resulting composites. To address this challenge, we developed a novel phosphorus-rich flame retardant via an electrostatic assembly strategy, combining phytate piperazine (PAPI) with melamine polyphosphate (MPP) in a 2:1 ratio. The rPP/FR-5 composite (PAPI/MPP 20 wt% total loading) exhibits exceptional condensed-phase char formation and phosphorus-nitrogen synergy, achieving a 67.90 % reduction in peak heat release rate (PHRR), 26.21 % lower total heat release (THR), and a limiting oxygen index (LOI) of 28.6 %, successfully attaining the UL-94 V-0 standard. Remarkably, the rPP/FR-5 composite simultaneously displays enhanced tensile and flexural strength (increased by 13.8 % and 34.0 % respectively) alongside impact resistance comparable to that of PP, attributed to superior dispersion and interfacial compatibility of the flame retardant. In summary, this work provides a scalable strategy to suppress the ‘wick effect’ in WTB-reinforced PP composites, advancing both fire safety and mechanical performance for high-performance structural applications.回收退役的风力涡轮机叶片(WTBs)作为聚丙烯(PP)复合材料的增强填料,为WTBs废物管理提供了一个可持续的解决方案。然而,WTB颗粒固有的“灯芯效应”严重损害了所得复合材料的阻燃性。为了解决这一挑战,我们通过静电组装策略开发了一种新型富磷阻燃剂,将植酸哌嗪(PAPI)与三聚氰胺聚磷酸(MPP)以2:1的比例结合。rPP/FR-5复合材料(PAPI/MPP 20 wt%总负荷)表现出优异的凝聚相炭形成和磷氮协同作用,峰值放热率(PHRR)降低67.90 %,总放热率(THR)降低26.21 %,极限氧指数(LOI)降低28.6 %,成功达到UL-94 V-0标准。值得注意的是,rPP/FR-5复合材料同时显示出与PP相当的拉伸和弯曲强度(分别增加13.8 %和34.0 %)以及抗冲击性,这归功于阻燃剂的优异分散性和界面相容性。总之,这项工作提供了一种可扩展的策略来抑制wtb增强PP复合材料的“灯芯效应”,提高了高性能结构应用的消防安全和机械性能。Multiphase-synergistic regulation strategy achieving superior strength-plasticity and prolonged strain-hardening of (Ti, Nb)B-reinforced Ti2AlNb compositeZiyuan Jia, Yu Zhang, Jiayi Jin, Hao Sun, Zibo Zhao, Weihang Lu, Lujun Huang, Lin Gengdoi:10.1016/j.compositesa.2025.109351 多相协同调控策略实现了(Ti, Nb) b增强Ti2AlNb复合材料优异的强度塑性和长时间的应变硬化Achieving excellent strength and plasticity of Ti2AlNb alloys is vital for aerospace applications, while this goal is often impeded by a strength-plasticity trade-off. Here, the stable network configuration was tailored through tiny (Ti, Nb)B whiskers, which decreased the primary B2 grain size from 647.1 μm of the sintered alloy to ∼ 100 μm. This study proposed a multiphase-synergistic regulation strategy by employing one-step solution treatment to simultaneously regulate matrix microstructure and retain the network configuration. Through the strategy, the superior tensile strength of 1087.1 MPa, yield strength of 954.1 MPa, and excellent uniform elongation of 16.6 % were achieved. Compared to the sintered alloy, the tensile strength and elongation of composite were enhanced by 13 % and 8.7 times, respectively. The refined O lamellae, interconnected B2 phase enhanced dislocation storage capacity, leading to higher dislocation density and prolonged strain hardening. The significantly enhanced strength benefited from solid solution strengthening, fine grain strengthening and load transfer strengthening. The excellent plasticity arose from relatively uniform strain partitioning between O and B2 phases at high strain levels, enabled by the activation of multi-system slips. This study emphasizes the importance of reinforcement configuration and microstructure control for advanced TiAl-based composite design.实现优异的Ti2AlNb合金的强度和塑性对于航空航天应用至关重要,而这一目标往往受到强度-塑性权衡的阻碍。在这里,通过微小的(Ti, Nb)B晶须定制稳定的网络结构,将烧结合金的初级B2晶粒尺寸从647.1 μm降低到 ~ 100 μm。本研究提出了一种多相协同调节策略,通过一步固溶处理同时调节基体微观结构并保持网络结构。通过该策略,获得了优异的抗拉强度1087.1 MPa,屈服强度954.1 MPa,均匀伸长率16.6 %。与烧结合金相比,复合材料的抗拉强度和伸长率分别提高了13 %和8.7倍。细化的O片层和相互连接的B2相增强了位错的存储能力,导致位错密度增大,延长了应变硬化时间。固溶强化、细晶强化和载荷传递强化均显著提高了材料的强度。优异的塑性源于高应变水平下O相和B2相之间相对均匀的应变分配,这是由多系统滑移激活所实现的。本研究强调了增强结构和微观结构控制对先进tial基复合材料设计的重要性。Composites Part B: EngineeringMultifunctional metamaterials based on MXene composite aerogels for integrated load-bearing and multiphysics wave attenuationXiangxiang Zhang, Zhicheng Wang, Guotai Zhou, Jun Li, Chao Li, Cheng Lin, Xiaozhou Xindoi:10.1016/j.composites b.2025.113075基于MXene复合气凝胶的综合承载和多物理场波衰减多功能超材料Multifunctional aerogel has a wide range of prospects for application in aerospace and other fields, but its low strength and easy peeling limited the further application. In this work, multifunctional metamaterials consisting of 4D-printed bio-inspired mechanical metamaterials and multifunctional aerogels was developed, which combined advantages of lightweight, excellent mechanical behaviors, electromagnetic wave absorption, thermal insulation and sound absorption. In particular, 4D printed shape memory mechanical metamaterials exhibited excellent load-bearing and energy-absorbing properties as well as programmability of their configuration and mechanical properties. Composite aerogel-based multifunctional metamaterials exhibited excellent properties of infrared thermal stealth, adjustable sound absorption and electromagnetic wave absorption, which covered almost the entire Ku-band. The developed metamaterial integrates mechanical, electromagnetic, acoustic and thermal functions, demonstrating broad application prospects in the aerospace field.多功能气凝胶在航空航天等领域具有广泛的应用前景,但其强度低、易剥离等缺点限制了其进一步应用。本研究开发了由3d打印仿生机械超材料和多功能气凝胶组成的多功能超材料,该材料结合了轻质、优异的力学性能、电磁波吸收、隔热和吸声等优点。特别是4D打印的形状记忆机械超材料表现出优异的承载和吸能性能,以及结构和力学性能的可编程性。复合气凝胶基多功能超材料具有优异的红外热隐身性能、可调吸声性能和电磁波吸收性能,几乎覆盖了整个ku波段。所开发的超材料集机械、电磁、声学和热学功能于一体,在航空航天领域具有广阔的应用前景。Bionic nanofiber membrane with hierarchical structure for directional sweat transport, photothermal conversion, electromagnetic protection and motion monitoringShushu Jia, Yanxu Lu, Yu Bai, Xiaohan Mei, Chunqi Guo, Xinyuan Shi, Guibin Wang, Shuling Zhangdoi:10.1016/j.composites b.2025.113088 具有层次化结构的仿生纳米纤维膜,可用于定向排汗、光热转换、电磁防护和运动监测The demand for multifunctional s mart materials is constantly increasing with the development of wearable electronic devices. However, persistent challenges remain in simultaneously achieving personal sweat management, photothermal conversion, electromagnetic protection and sport monitoring. Inspired by vascular plants, we prepared all-in-one nanofiber membranes (CuS@PDA/PAN-MXene-TPU) with multilayer structures through interface interaction between components, which showed the wettability and pore size gradients in the thickness direction. The biomimetic gradient structure achieved directional sweat transport (10 s) under antigravity conditions, and the water evaporation rate was 688 g·m-2·d-1. Furthermore, due to the synergistic effect of CuS and MXene, the membrane had photothermal conversion performance, with the temperature increasing from 25°C to 49°C under 50 mW·cm-2 near infrared (NIR) irradiation. In outdoor tests, the temperature of the biomimetic membrane was 15°C and 9°C higher than that of the cotton on sunny and cloudy days, respectively. The combination of directional sweat removal and photothermal conversion enhanced the comfort during outdoor activities in cold climates. Meanwhile, the dual-channel conductive network of CuS and MXene made CuS@PDA/PAN-MXene-TPU exhibit good electromagnetic interference (EMI) shielding effectiveness (48 dB) and sensitive strain-sensing capabilities (80 ms). This work provides a promising design strategy for the development of multifunctional s mart wearable materials.随着可穿戴电子设备的发展,对多功能智能材料的需求不断增加。然而,在同时实现个人汗液管理、光热转换、电磁保护和运动监测方面,仍然存在持续的挑战。受维管植物的启发,我们通过组分之间的界面相互作用,制备了具有多层结构的一体化纳米纤维膜(CuS@PDA/PAN-MXene-TPU),并在厚度方向上显示出润湿性和孔径梯度。仿生梯度结构在反重力条件下实现了定向输汗(10 s),水分蒸发速率为688 g·m-2·d-1。此外,由于cu和MXene的协同作用,膜具有光热转化性能,在50 mW·cm-2近红外(NIR)照射下,温度从25℃升高到49℃。在室外试验中,在晴天和阴天,仿生膜的温度分别比棉花高15℃和9℃。定向排汗和光热转换的结合增强了寒冷气候下户外活动的舒适性。同时,制备的cu和MXene双通道导电网络CuS@PDA/PAN-MXene-TPU具有良好的电磁干扰(EMI)屏蔽效果(48 dB)和灵敏的应变传感能力(80 ms)。这项工作为多功能智能可穿戴材料的开发提供了一种有前途的设计策略。High-performance dual-strategy reinforced spontaneously polarized nanofibers with tailored MXene interfaces for sustainable multifunctional intelligent textilesArchana Pandiyan, Renganathan Vengudusamy, Loganathan Veeramuthu, Amirthavarshini Muthuraman, Snekaa Babu, Hemanth Jawaharlal, Hao-Yuan Chen, Po-Hao Chen, Yu-Chen Wang, C.R. Kao, Hyunjin Lee, Tao Zhou, Chi-Ching Kuodoi:10.1016/j.composites b.2025.113089 高性能双策略增强自发极化纳米纤维与定制的MXene界面可持续多功能智能纺织品 S mart wearables have significantly transformed contemporary lifestyles by effectively integrating health monitoring, energy harvesting, and sustainable technology, thereby fostering innovative progress in both personal health and environmental sustainability. This study introduces reinforced spontaneously polarized nanofibers (RSNF) produced through a straightforward electrospinning method, which incorporates size confined and surface tailored (SCST) vanadium carbide (VC) MXene nanosheets into a poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) nanofiber composite. The addition of MXene promotes the self-assembly of crystalline phases into the piezoelectric β-phase, thereby substantially improving charge transfer efficiency. The developed piezoelectric nanogenerator utilizing RSNF membranes effectively harvested biomechanical energy, achieving a high output voltage of ∼27.8 V and current of ∼1.45 μA. Furthermore, the RSNF membranes displayed remarkable photo-piezocatalytic capabilities in the degradation of charged dyes, including Rhodamine B, Alizarin Red, and Indigo Carmine, under the influence of mechanical vibration and solar irradiation. Notably, Rhodamine B degradation reached 90% within 120 minutes through synergistic piezo-photocatalysis, exceeding the performance of standalone photocatalysis (41%) and piezocatalysis (61%) under the same conditions, thereby highlighting the enhanced catalytic activity resulting from the synergistic interaction between MXene and PVDF-HFP. The as-developed RSNF retained 88% piezoelectric performance after recycling, demonstrating scalable potential for advanced sustainable solutions in intelligent textiles and environmental remediation.智能可穿戴设备通过有效地整合健康监测、能量收集和可持续技术,显著改变了当代的生活方式,从而促进了个人健康和环境可持续性的创新进步。本研究介绍了通过直接静电纺丝方法生产的增强自发极化纳米纤维(RSNF),该方法将尺寸限制和表面定制(SCST)碳化钒(VC) MXene纳米片纳入聚偏氟乙烯-共六氟丙烯(PVDF-HFP)纳米纤维复合材料中。MXene的加入促进了晶体相自组装成压电β相,从而大大提高了电荷转移效率。利用RSNF膜开发的压电纳米发电机有效地收集了生物机械能,实现了高达27.8 V的高输出电压和1.45 μA的电流。此外,在机械振动和太阳辐照作用下,RSNF膜在降解罗丹明B、茜素红和靛蓝胭脂红等带电染料方面表现出了显著的光压电催化能力。值得注意的是,通过协同压电-光催化,Rhodamine B的降解在120分钟内达到90%,超过了相同条件下单独光催化(41%)和压电催化(61%)的性能,从而突出了MXene与PVDF-HFP之间的协同作用增强了催化活性。开发的RSNF在回收后保持了88%的压电性能,展示了在智能纺织品和环境修复中先进可持续解决方案的可扩展潜力。Composites Science and TechnologyBio-based Cyclic Acetal Epoxy Vitrimer Upcycling: From Composite Matrix to InterfaceZidie Song, Kangle Xue, Yuliang Xia, Hailong Liu, Tao You, Zibo Hua, Hong Cui, Li Liu, Zhen Hu, Yudong Huangdoi:10.1016/j.compscitech.2025.111411 生物基环缩醛环氧玻璃体升级回收:从复合基质到界面Epoxy resins, extensively employed as the polymer matrix in composites, face significant environmental challenges owing to their non-degradability. While incorporating dynamic acetal bonds offers promise, current acetal epoxies suffer from low modulus, poor thermal stability, and unoptimized degradation kinetics/performance balance. Furthermore, upcycling their degradation products yields only low-value additives with compromised properties. We present a bio-based epoxy vitrimer reconciling performance and circularity. Synthesized from vanillin and sorbitol, its key innovation is integrating multicyclic acetal motifs within the network. This vitrimer overcomes traditional limitations, achieving a high tensile modulus (3.63 GPa) and thermal stability (Td5: 331 °C), suitable for demanding applications. Its molecular design enables ultrafast degradation (within 6 min, 65 °C) in diluted acid, facilitated by high-density labile cyclic acetal crosslinks. Crucially, the aldehyde/hydroxyl-rich degradation products are upcycled into high-performance sizing agents for carbon fiber composites. These agents achieve interfacial shear strengths of 70-80 MPa, matching industrial standards and resolving the acetal-epoxy upcycling challenge. This work establishes a scalable, sustainable framework for high-performance polymers, enabling efficient composite recycling and aligning industrial needs with circular economy principles.环氧树脂作为复合材料中广泛使用的聚合物基体,由于其不可降解性而面临着重大的环境挑战。虽然加入动态缩醛键带来了希望,但目前的缩醛环氧树脂存在模量低、热稳定性差、降解动力学/性能平衡未优化等问题。此外,升级回收它们的降解产物只产生低价值的添加剂,性能受损。提出了一种性能与圆度相协调的生物基环氧树脂。由香兰素和山梨醇合成,其关键创新是在网络中整合多环缩醛基序。这种玻璃聚合物克服了传统的限制,实现了高拉伸模量(3.63 GPa)和热稳定性(Td5: 331°C),适用于要求苛刻的应用。它的分子设计能够在稀释酸中进行超快速降解(6分钟,65°C),通过高密度不稳定的环缩醛交联促进。至关重要的是,这些富含醛/羟基的降解产物被升级为碳纤维复合材料的高性能施胶剂。这些试剂的界面剪切强度达到70- 80mpa,符合工业标准,解决了缩醛-环氧树脂升级回收的挑战。这项工作为高性能聚合物建立了一个可扩展的、可持续的框架,实现了高效的复合材料回收,并将工业需求与循环经济原则相结合。Functionalized Degradable Soybean Oil-Based Biomimetic Porous Scaffolds for Complex Bone Defects: Vat Photopolymerization Additive Manufacturing, Photothermal-Mediated Shape Memory and Tumor ThermotherapyWang Guo, Yanting Wei, Chen Xu, Bowen Li, Yunlei Wu, Yu Gong, Huaming Mai, Shan Wang, Yong Zhang, Yu Longdoi:10.1016/j.compscitech.2025.111412 基于功能化可降解大豆油的复杂骨缺损仿生多孔支架:还原光聚合增材制造、光热介导的形状记忆和肿瘤热治疗Complex bone defects caused by trauma or disease represent a significant challenge in the field of bone tissue engineering. Additive manufacturing (AM)-based functionalized bone scaffolds offer promising potential for providing personalized solutions to treat such complex defects. Among these, epoxidized soybean oil acrylate (AESO), as an attractive bio-based photocurable resin, has enormous application potential in tissue engineering; however, issues such as high viscosity and low photosensitivity hinder its widespread use in vat photopolymerization (VPP). This study proposes improving the digital light processing (DLP) printing performance of AESO systems by incorporating isobornyl methacrylate (IBOMA), and simultaneously developing a shape-memory polymer (S MP) resin system. Furthermore, the scaffolds are endowed with NIR-triggered photothermal functionality through the incorporation of calcium lignosulfonate (CL), aiming to enable photothermal-mediated wireless remote shape memory and tumor suppression. Results show that DLP-fabricated triply periodic minimal surface (TPMS) composite bone scaffolds exhibit controllable biomimetic porous surfaces and tunable mechanical properties. The addition of CL endows the scaffolds with composition-dependent and NIR irradiation-modulated controllable photothermal response behavior under simulated physiological conditions, facilitating remote, controlled shape memory activation and mild, safe tumor cell suppression via photothermal therapy. Moreover, CL enhances scaffold hydrophilicity, promotes degradation through preferential dissolution and micro-porous surface formation, and enables sustained calcium ion release. These features improve biomineralization, supporting cell proliferation and osteogenic differentiation. This research provides a promising solution for the fabrication of biomimetic porous bone scaffolds using soybean oil-based photoreactive materials via VPP technology, with multifunction to address complex, irregular, and tumor-associated bone defects.创伤或疾病引起的复杂骨缺损是骨组织工程领域的一个重大挑战。基于增材制造(AM)的功能化骨支架为治疗此类复杂缺陷提供个性化解决方案提供了巨大的潜力。其中,环氧大豆油丙烯酸酯(AESO)作为一种极具吸引力的生物基光固化树脂,在组织工程中具有巨大的应用潜力;然而,高粘度和低光敏性等问题阻碍了其在还原光聚合(VPP)中的广泛应用。本研究提出通过加入甲基丙烯酸异硼酸酯(IBOMA)来改善AESO系统的数字光处理(DLP)打印性能,同时开发形状记忆聚合物(S MP)树脂体系。此外,通过加入木质素磺酸钙(CL),支架被赋予nir触发的光热功能,旨在实现光热介导的无线远程形状记忆和肿瘤抑制。结果表明,dlp制备的三周期最小表面(TPMS)复合骨支架具有可控的仿生多孔表面和可调的力学性能。CL的加入使支架在模拟生理条件下具有成分依赖和近红外辐射调节的可控光热响应行为,有利于通过光热治疗实现远程可控的形状记忆激活和轻度、安全的肿瘤细胞抑制。此外,CL增强支架的亲水性,通过优先溶解和微孔表面形成促进降解,并使钙离子持续释放。这些特征促进生物矿化,支持细胞增殖和成骨分化。本研究为利用大豆油基光反应材料通过VPP技术制备仿生多孔骨支架提供了一种有前景的解决方案,该材料具有多种功能,可解决复杂、不规则和肿瘤相关的骨缺损。Rigid-Flexible Interface Engineering of PANI/ZIF-67 Coated Basalt Fibers for High-Performance Epoxy Composites with EMI Shielding CapabilityWanghai Chen, Xuanyi Xu, Xinran Yang, Yuzi Jian, Jiazi Hou, Quanming Li, Yanli Doudoi:10.1016/j.compscitech.2025.111413 具有电磁干扰屏蔽性能的高性能环氧复合材料PANI/ZIF-67涂层玄武岩纤维的刚柔界面工程To enhance the interfacial adhesion and electromagnetic interference (EMI) shielding performance of basalt fiber-reinforced epoxy (BF/EP) composites, a hierarchical rigid–flexible structure was constructed by sequentially depositing polyaniline (PANI) and in-situ grown ZIF-67 nanosheets on basalt fibers. The PANI coating established a conductive network that facilitated charge transport and interfacial polarization, significantly improving electromagnetic wave absorption. Concurrently, the vertically aligned ZIF-67 provided structural rigidity and abundant interfacial bonding sites, promoting mechanical interlocking and stress transfer. This synergistic architecture created a gradient modulus interface, which effectively mitigated interfacial delamination and improved stress transfer efficiency. Compared to the BF/EP composites, the optimized Z3-PBF/EP composites demonstrated significant improvements in interfacial shear strength (63.7%), interlaminar shear strength (78.6%), flexural strength (44.2%), flexural modulus (68.1%) and impact strength (61.6%). The EMI shielding effectiveness reached 32.74 dB, dominated by absorption loss due to the integrated conductive and porous architecture. This work provides an effective and facile strategy for simultaneously improving the mechanical properties of the composite and imparting EMI shielding capability to basalt fiber composites.为了提高玄武岩纤维增强环氧树脂(BF/EP)复合材料的界面附着力和电磁干扰屏蔽性能,将聚苯胺(PANI)和原位生长的ZIF-67纳米片依次沉积在玄武岩纤维上,构建了刚柔复合材料的层次化结构。聚苯胺涂层建立了一个导电网络,促进了电荷传输和界面极化,显著提高了电磁波吸收。同时,垂直排列的ZIF-67提供了结构刚度和丰富的界面键合位点,促进了机械联锁和应力传递。这种协同结构创造了一个梯度模量界面,有效地缓解了界面分层,提高了应力传递效率。与BF/EP复合材料相比,优化后的Z3-PBF/EP复合材料在界面抗剪强度(63.7%)、层间抗剪强度(78.6%)、抗弯强度(44.2%)、抗弯模量(68.1%)和冲击强度(61.6%)方面均有显著提高。电磁干扰屏蔽效率达到32.74 dB,主要是由于导电和多孔结构的综合吸收损失。这项工作为同时提高玄武岩纤维复合材料的力学性能和增强电磁干扰屏蔽能力提供了一种有效而简便的策略。Modifying stacking sequences to leverage the effects of shear thickening gel (STG) on the impact resistance of the STG applied carbon fibre-reinforced polymer (SACFRP) composite laminatesWanrui Zhang, Jianchao Zou, Zongyou Wei, Zhibin Han, Lei Yang, Weizhao Zhangdoi:10.1016/j.compscitech.2025.111414 修改堆叠顺序,利用剪切增稠凝胶(STG)对STG应用于碳纤维增强聚合物(SACFRP)复合材料层合板的抗冲击性的影响In this work, shear-thickening-gel applied CFRP (SACFRP) composite laminates were developed to enhance the impact resistance of the composites under low-velocity impact (LVI) conditions, where the incorporated shear thickening gel (STG) worked as the interphase material between fibres and resin matrix. To ana lyse the effects of STG in its composites, static tensile and shear tests were first conducted on longitudinally and transversely positioned unidirectional (UD) SACFRP and its CFRP reference, respectively. Experimental results indicated that the corresponding reduction of the resin matrix due to the incorporation of the relatively soft STG weakened the interlaminar behaviour of the SACFRP laminates during static mechanical tests. However, the transverse tensile toughness of the SACFRP exhibited a remarkable 139% improvement compared to the CFRP reference, demonstrating significant interfacial toughening of the developed composites, as verified through SEM an alysis. To leverage the effects of the STG on the composites, this work modified the stacking sequences of SACFRP laminates. LVI tests and recurring LVI tests demonstrated the substantial improvement of impact performance for layup-designed SACFRP laminates since the impact-resistant mechanis m transitioned from the local damage of CFRPs to the global flexural behaviour of SACFRPs. Timoshenko’s an lytical model validated the resistant mechanis m transition of layup-designed SACFRP during LVI tests. Therefore, the SACFRP laminates with modified stacking sequences demonstrate outstanding potential for use under extreme loading conditions involving complex and unavoidable impacts, highlighting their broad applicability across various industries.在这项工作中,开发了剪切增稠凝胶应用于CFRP (SACFRP)复合材料层合板,以提高复合材料在低速冲击(LVI)条件下的抗冲击性,其中掺入的剪切增稠凝胶(STG)作为纤维和树脂基体之间的界面材料。为了分析STG在其复合材料中的作用,首先分别对纵向和横向定位的单向(UD) SACFRP及其CFRP基准进行了静态拉伸和剪切试验。实验结果表明,在静态力学试验中,相对柔软的STG掺入导致树脂基体的相应减少,削弱了SACFRP层合板的层间行为。然而,与CFRP相比,SACFRP的横向拉伸韧性提高了139%,表明复合材料的界面增韧显著,通过SEM分析证实了这一点。为了充分利用STG对复合材料的影响,本工作修改了SACFRP层压板的堆叠顺序。LVI试验和重复LVI试验表明,由于抗冲击机制从cfrp的局部损伤转变为SACFRP的整体弯曲行为,分层设计的SACFRP层合板的冲击性能有了实质性改善。Timoshenko的分析模型在LVI试验中验证了分层设计SACFRP的抗性机制转变。因此,改进堆叠顺序的SACFRP层压板在涉及复杂和不可避免影响的极端负载条件下显示出出色的使用潜力,突出了其在各个行业的广泛适用性。 来源:复合材料力学仿真Composites FEM

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习计划 福利任务
下载APP
联系我们
帮助与反馈