今日更新:Composite Structures 3 篇,Composites Part A: Applied Science and Manufacturing 3 篇,Composites Part B: Engineering 6 篇,Composites Science and Technology 2 篇
Ballistic response of composite helmets engineered with cellular metamaterials
Tom Fisher, Zafer Kazancı, José Humberto S. Almeida
doi:10.1016/j.compstruct.2025.119846
细胞超材料复合头盔的弹道响应
This study investigates the integration of cellular metamaterials into combat helmet systems under ballistic loading, with a focus on realistic helmet geometries and both direct and oblique impact conditions. As global conflict zones increasingly demand lightweight and high-performance protective gear for enhanced mobility and survivability, auxetic structures, particularly the double arrowhead (DAH) topology, demonstrated substantial improvements in head protection, reducing injury metrics such as peak linear acceleration and head injury criterion (HIC) by over 50% compared to non-auxetic designs. Cellular helmet pad systems, explored here for the first time, achieved comparable or superior impact mitigation while halving system weight. Detailed damage evolution an alysis revealed that DAH structures exhibited more gradual and confined failure compared to re-entrant designs, further supporting their superior performance. These results offer valuable insights into the mechanics of impact resistance and set a new benchmark for the design of lightweight, high-performance protective equipment.
本研究研究了在弹道载荷下将细胞超材料集成到战斗头盔系统中,重点研究了现实头盔几何形状以及直接和倾斜冲击条件。随着全球冲突地区对轻型和高性能防护装备的需求日益增加,为了增强机动性和生存能力,辅助结构,特别是双箭头(DAH)拓扑结构,在头部保护方面取得了重大进展,与非辅助设计相比,减少了损伤指标,如峰值线性加速度和头部损伤标准(HIC),降低了50%以上。蜂窝头盔垫系统,在这里首次探索,实现了相当或更好的冲击缓解,同时减半系统重量。详细的损伤演化分析表明,与再入式设计相比,DAH结构表现出更渐进和有限的破坏,进一步支持了其优越的性能。这些结果为抗冲击机制提供了有价值的见解,并为轻量化、高性能防护设备的设计设定了新的基准。
A hierarchical homogenization framework for 3D-printed continuous fiber-reinforced composites: predicting flexural-torsional behavior of corrugated sandwich structures with computational efficiency
Jiansong Xu, Xiuxian Jia, Ye Yu, Xingsheng Sun, Guofu Ding
doi:10.1016/j.compstruct.2025.119853
三维打印连续纤维增强复合材料的分层均匀化框架:用计算效率预测波纹夹层结构的弯曲-扭转行为
This study systematically evaluated the flexural behavior of two types of 3D-printed continuous fiber-reinforced composite (CFRC) corrugated sandwich beams through an integrated approach of experimental tests, a detailed finite element model (DFEM), and an innovative hierarchical homogenization model (HHM). Additionally, the flexural and torsional behaviors of corrugated plates were ana lyzed using both DFEM and HHM. The HHM employs a multiscale strategy at the filament, corrugated unit-cell, and component levels to predict flexural and torsional responses of beams and plates. Results showed excellent agreement between HHM, DFEM, and experiments, and the HHM achieves markedly higher computational efficiency, improving calculation speed by 87.6%, 94.4%, and 99.4% for beam bending, plate bending, and plate torsion, respectively. The HHM enables rapid and versatile parametric studies of geometric variables, fiber layer counts, and material combinations, offering a practical alternative when DFEM becomes prohibitively expensive. This capability is particularly valuable for the fast design and optimization of corrugated cores and sandwich structures in industrial applications. The findings demonstrate that the proposed multiscale homogenization framework is accurate, efficient, and adaptable, providing a powerful tool for ana lyzing and optimizing the mechanical performance of 3D-printed CFRC corrugated components
本研究通过实验测试、详细有限元模型(DFEM)和创新的分层均质模型(HHM)的综合方法,系统地评估了两种类型的3d打印连续纤维增强复合材料(CFRC)波纹夹层梁的弯曲行为。此外,采用DFEM和HHM分析了波纹板的弯曲和扭转行为。HHM在细丝、波纹单元格和组件水平上采用多尺度策略来预测梁和板的弯曲和扭转响应。结果表明,HHM、DFEM与实验结果吻合良好,且HHM的计算效率显著提高,梁弯曲、板弯曲和板扭转的计算速度分别提高了87.6%、94.4%和99.4%。HHM能够对几何变量、纤维层数和材料组合进行快速和通用的参数研究,当DFEM变得非常昂贵时,提供了一种实用的替代方案。这种能力对于工业应用中瓦楞芯和夹层结构的快速设计和优化特别有价值。研究结果表明,所提出的多尺度均匀化框架准确、高效、适应性强,为分析和优化3d打印CFRC瓦楞组件的力学性能提供了有力的工具
Fiber–matrix interface strengthening via brine-derived MgO expansion agent
S.H. Chu, E.H. Yang, Jacob Fish, Cise Unluer
doi:10.1016/j.compstruct.2025.119854
卤水衍生MgO膨胀剂强化纤维-基体界面
Fiber-matrix interfacial transition zone (ITZ) is generally the weakest region in fiber reinforced concrete (FRC). This study aims to tailor the anisotropic fiber–matrix interface toward an asymptotic isotropic state. Self-prestressed concrete was engineered through the synergistic coupling of fibers and expansion agents, in which autogenous matrix expansion under fiber restraint generated active confinement during hardening and passive confinement under external loading. A novel process was developed to recover the MgO expansion agent from desalination brine and alkaline wastewater from ultra-high-performance concrete (UHPC) curing. Different dosages of MgO expansion agent were incorporated into polyvinyl alcohol fiber reinforced magnesium silicate hydrates (PVA-MSH) matrix. Single fiber pull-out tests revealed a 9.4–33.0% increase in fiber bond strength at 4–8% expansion agent. Quantitative nanoindentation an alysis through sophisticated techniques at microscale demonstrated that incorporating waste-derived MgO expansion agent enhanced the fiber–matrix ITZ by enhancing local stiffness and hardness, with the anisotropic index (AI) reduced by 50% at 4% expansion agent. This study advances low-cost, sustainable, high-performance concrete design with waste-derived materials.
纤维-基体界面过渡区(ITZ)通常是纤维混凝土(FRC)中最薄弱的区域。本研究旨在将各向异性纤维-基质界面调整为渐近各向同性状态。自预应力混凝土是通过纤维和膨胀剂的协同耦合来设计的,在纤维约束下,自基体膨胀在硬化过程中产生主动约束,在外载荷作用下产生被动约束。研究了从超高性能混凝土(UHPC)养护过程中脱盐盐水和碱性废水中回收MgO膨胀剂的新工艺。在聚乙烯醇纤维增强水合硅酸镁(PVA-MSH)基体中掺入不同剂量的氧化镁膨胀剂。单纤维拉拔试验表明,膨胀剂用量为4-8%时,纤维粘结强度提高9.4-33.0%。通过精密的微尺度纳米压痕定量分析技术表明,添加垃圾衍生的MgO膨胀剂通过提高纤维基体的局部刚度和硬度来增强纤维基体的ITZ,当膨胀剂含量为4%时,各向异性指数(AI)降低了50%。这项研究推进了低成本、可持续、高性能的废物衍生材料混凝土设计。
Determination of cryogenic interfacial parameters in carbon/epoxy composites and low-temperature failure mechanis m via a hybrid experiment-simulation-machine learning method
Yicheng Jiang, Wenjin Zhang, Xueqin Luo, Qianying Cen, Biao Xu, Ling Liu, Zhanjun Wu
doi:10.1016/j.compositesa.2025.109427
基于实验-模拟-机器学习的碳/环氧复合材料低温界面参数测定及低温失效机理
To address the critical challenge of determining reliable interfacial cohesive zone model (CZM) parameters for carbon fiber/epoxy composites (CFRPs) under cryogenic conditions,this study establishes a novelinverse framework integratingexperimental testing, multi-scale finite element modeling (FEM), machine learning (ML), and a traversal algorithm. (1) Experimental90° tensile/compressive tests (−183 °C–25 °C) show 32.9–91.7 % strengths/mod uli enhancement with cooling. (2) Microscaleunit-cell simulations on 90° tension/compression, incorporatingtemperature-dependent EP properties and predefined CZM parameters, generate temperature-CZM-strengths datasets. (3) The datasets are used to train a Sparrow Search Algorithm-BP neural network to establish temperature-CZM-strengths mappings. (4) A traversal algorithm is performed to constrain deviations to <3 % between experimental and ML-predicted strengths, thus deriving temperature-dependent CZM parameters. Based on this, mesoscale multi-fiber simulations on 90° tension/compression (at 25 °C, −55 °C, and −183 °C) demonstrate the reliability of CZM parameters, with simulated strengths deviating <8 % from experiments. The results reveal two fundamental mechanis ms: (1) With cooling from 25 °C to −183 °C, the CZM parameters increase exponentially: the normal strength rises from 41 to 55 MPa, the shear strength from 61.5 to 82.5 MPa, and the fracture energy from 3 to100 J/m2; (2) Failure modes shift from interface-dominated cracking (25 °C) to matrix-controlled fracture(−183 °C) due to thermal stress redistribution. This framework delivers validated cryogenic CZM parameters for the precision design of CFRP cryogenic structures
为了解决在低温条件下确定碳纤维/环氧复合材料(CFRPs)可靠的界面粘接区模型(CZM)参数的关键挑战,本研究建立了一个集实验测试、多尺度有限元建模(FEM)、机器学习(ML)和遍历算法为一体的新型逆框架。(1) 90°拉伸/压缩试验(−183 °C - 25 °C)显示,冷却后强度/模量增强32.9-91.7 %。(2) 90°拉伸/压缩的微尺度单元模拟,结合与温度相关的EP特性和预定义的CZM参数,生成温度-CZM强度数据集。(3)利用数据集训练Sparrow搜索算法- bp神经网络,建立温度- czm强度映射。(4)使用遍历算法将实验强度与ml预测强度之间的偏差约束为 <3 %,从而推导出与温度相关的CZM参数。基于此,在90°拉伸/压缩(25 °C, - 55 °C和- 183 °C)的中尺度多纤维模拟证明了CZM参数的可靠性,模拟强度与实验偏差 <8 %。结果揭示了两种基本机理:(1)随着冷却温度从25 °C降至−183 °C, CZM参数呈指数增长:法向强度从41增加到55 MPa,抗剪强度从61.5增加到82.5 MPa,断裂能从3增加到100 J/m2;(2)由于热应力重分布,破坏模式由界面主导的破裂(25 °C)向基质控制的破裂(−183 °C)转变。该框架为CFRP低温结构的精密设计提供了有效的低温CZM参数
Multiscale filler network design enables solid–liquid reversible thermal interface materials with high thermal conductivity and low thermal resistance
Jiahui Wangi, Shujun Cai, Yabiao Ma, Jian-Bin Xu, Jianfeng Fan, Xiaoliang Zeng, Rong Sun
doi:10.1016/j.compositesa.2025.109422
多尺度填料网络设计使固液可逆热界面材料具有高导热性和低热阻
Thermal interface materials (TIMs) for high-power electronics must combine high thermal conductivity, low thermal resistance, processability, and long-term reliability—requirements rarely met in a single material. Here, we present a multiscale filler network design for solid–liquid reversible TIMs, achieved by blending gradient-sized spherical alumina particles within a polydimethylsiloxane (PDMS) matrix. This hierarchical network forms continuous thermal-conduction pathways, endowing the TIMs with a high thermal conductivity of 7.1 W·m−1·K−1. Meanwhile, its reversible solid–liquid transition can be precisely controlled at a moderate yield stress of ∼2800 Pa, enabling both precision printing in the liquid-like state and mechanical stability in the solid-like state. The synergistic combination of high thermal conductivity and low viscosity results in a low thermal resistance of 28 mm2·K·W−1. When employed between a high-power GPU and a cold plate, the TIM featuring a solid-like state reduces the steady-state junction temperature by ≈22 °C and maintains excellent anti-pumping performance over 1000 thermal-shock cycles. This solid–liquid reversible, multiscale network approach provides a versatile platform for manufacturing-ready, high-performance TIMs in next-generation thermal management.
用于大功率电子器件的热界面材料(TIMs)必须结合高导热性、低热阻、可加工性和长期可靠性要求,这些要求在单一材料中很难满足。在这里,我们提出了一种多尺度填料网络设计,用于固体-液体可逆TIMs,通过在聚二甲基硅氧烷(PDMS)基质中混合梯度大小的球形氧化铝颗粒来实现。这种层次化的网络形成了连续的热传导途径,使TIMs具有7.1 W·m−1·K−1的高导热系数。同时,它的可逆固液转变可以在~ 2800 Pa的中等屈服应力下精确控制,既可以在类液体状态下精确打印,又可以在类固体状态下保持机械稳定性。高导热性和低粘度的协同作用使其热阻低至28 mm2·K·W−1。当在高功率GPU和冷板之间使用时,具有固体状状态的TIM将稳态结温降低约22 °C,并在1000次热冲击循环中保持优异的抗泵送性能。这种固液可逆的多尺度网络方法为下一代热管理中的高性能TIMs提供了一个通用平台。
High-performance ceramic thermal barrier coatings for carbon fiber-reinforced plastics developed by atmospheric plas ma spraying
Kandasamy Praveen, Heejin Kim, Juhyeong Lee, Ji-Hyun Cha, Min Wook Lee
doi:10.1016/j.compositesa.2025.109424
用常压等离子喷涂技术研制高性能碳纤维增强塑料陶瓷热障涂层
Developing ceramic-based thermal barrier coatings (TBCs) on the fabric materials is challenging because they lack stable surfaces for achieving high-quality coatings. Herein, we propose the direct deposition of TBCs on the surface of carbon fabric, followed by the manufacturing of carbon fiber-reinforced plastic (CFRP) composite and the evaluation of its high-temperature performance. Yttrium aluminum garnet (YAG) TBCs were deposited on 3K carbon fabric using atmospheric plas ma spray (APS). The porosity of the coatings was tailored using a pore-forming agent, polyether ether ketone (PEEK), and the CFRP composite was manufactured through the vacuum-assisted resin transfer molding (VARTM) process. The thermal barrier performance of the resulting TBC-CFRP composite was evaluated at various temperatures, and its mechanical properties were also assessed. The porous YAG TBC, with a porosity of approximately 35 %, exhibited a reduced thermal conductivity of 0.57–0.64 W/m·K in the 25–400 °C range. The thermal barrier performance tests revealed that the back-surface temperature of the TBC-CFRP composite specimen ranged from 253 to 305 °C, while the flame temperature was approximately 500–700 °C. The composite maintained its initial strength up to 500 °C and retained about 25 % even after exposure to 700 °C. This study demonstrates the feasibility of integrating porous YAG TBCs directly onto carbon fabrics to enhance the high-temperature resistance of CFRP composites while maintaining manufacturability through conventional VARTM processing.
在织物材料上开发基于陶瓷的热障涂层(tbc)具有挑战性,因为它们缺乏稳定的表面来实现高质量的涂层。在此,我们提出在碳纤维织物表面直接沉积tbc,然后制造碳纤维增强塑料(CFRP)复合材料并对其高温性能进行评价。采用常压等离子喷涂技术(APS)在3K碳织物上沉积钇铝石榴石(YAG) tbc。采用聚醚醚酮(PEEK)成孔剂调整涂层的孔隙度,并通过真空辅助树脂传递模塑(VARTM)工艺制备CFRP复合材料。在不同温度下对TBC-CFRP复合材料的热障性能进行了评价,并对其力学性能进行了评价。孔隙率约为35 %的多孔YAG TBC在25-400 °C范围内的导热系数降低了0.57-0.64 W/m·K。热障性能测试表明,TBC-CFRP复合材料试样的背表面温度范围为253 ~ 305 °C,火焰温度约为500 ~ 700 °C。复合材料在高达500 °C时保持其初始强度,即使在暴露于700 °C后也保持约25% %。本研究证明了将多孔YAG tbc直接集成到碳织物上的可行性,以提高CFRP复合材料的耐高温性能,同时通过传统的VARTM加工保持可制造性。
Multifunctional Foams with Oriented Bimodal Cellular Structure and Barbule-like Surface Fabricated by Bi-thermoplastic Expanding Microsphere Mold-opening Foaming
Haiying Zhan, Ziheng Zhang, Ao Yang, Jinghao Qian, Maxwell Fordjour Antwi-Afari, Xiao Li, Xin Jing, Binbin Dong, Hao-Yang Mi
doi:10.1016/j.composites b.2025.113173
双热塑性膨胀微球开模发泡制备具有定向双峰胞状结构和小管状表面的多功能泡沫材料
The growing demand for multifunctional lightweight materials integrating electromagnetic (EM) wave absorption, impact resistance, thermal insulation, and self-cleaning poses significant challenges due to structural and processing trade-offs. This study proposes a bi-thermoplastic expanding microsphere (Bi-TEM) mold-opening foaming (BTMOF) strategy to fabricate polypropylene/carbon nanotube/Fe3O4 (PP/CNT/Fe3O4) composite foams with oriented bimodal cells and barbule-like surface topology in a single step. The synergistic foaming of high- and low-temperature TEMs under mold-opening stress creates an oriented bimodal structure, while in-mold micro-template imprinting spontaneously constructs superhydrophobic surface microstructures. The oriented bimodal cells extend EM wave propagation paths, achieving a reflection loss (RL) of −47.82 dB and an effective absorption bandwidth (EAB) of 5.04 GHz using enhanced interfacial polarization and multiple reflections. The structure also enables 92.06% impact energy absorption efficiency through progressive folding and reduces thermal conductivity to 0.0336 W/(m·K) by phonon scattering. Meanwhile, the barbule-like surface ensures super-hydrophobicity (contact angle of 161.6 °; sliding angle of 3°), rendering the foam self-cleaning attributes. This BTMOF approach overcomes traditional scalability limitations, offering a facile route to fabricate multifunctional foams for aerospace, defense, and wearable electronics sectors.
对集电磁(EM)波吸收、抗冲击、隔热和自清洁为一体的多功能轻质材料的需求不断增长,由于结构和加工方面的权衡,带来了重大挑战。本研究提出了一种双热塑性膨胀微球(Bi-TEM)开模发泡(BTMOF)策略,用于一步制备聚丙烯/碳纳米管/Fe3O4 (PP/CNT/Fe3O4)复合泡沫,该泡沫具有定向双峰细胞和小棒状表面拓扑结构。高温和低温tem在开模应力作用下协同发泡形成定向双峰结构,而模内微模板印迹则自发形成超疏水表面微结构。定向双峰电池扩展了电磁波传播路径,利用增强的界面极化和多次反射,实现了−47.82 dB的反射损耗(RL)和5.04 GHz的有效吸收带宽(EAB)。该结构通过渐进式折叠使冲击能量吸收效率达到92.06%,通过声子散射使热导率降低到0.0336 W/(m·K)。同时,小管状表面保证了超疏水性(接触角161.6°,滑动角3°),使泡沫具有自洁特性。这种BTMOF方法克服了传统的可扩展性限制,为航空航天、国防和可穿戴电子行业制造多功能泡沫提供了一条便捷的途径。
Hollow TiO2-Embedded PVDF Films with Synergistic Optical Selectivity and Environmental Durability for Passive Daytime Radiative Cooling
Yuhan Zhang, Zhixin Sun, Ziqi Dong, Fangzheng Qi, Xiaodong Yang, Bo Xu, Guang-Ning Liu, Yiqiang Sun, Cuncheng Li
doi:10.1016/j.composites b.2025.113180
具有协同光学选择性和环境耐久性的中空tio2嵌入PVDF膜用于被动日间辐射冷却
Passive daytime radiative cooling (PDRC) is a radiative thermal management approach that passively enables continuous cooling under sunlight without external energy input. It offers great potential for reducing building energy consumption, alleviating peak electricity demand, and mitigating global warming. However, conventional inorganic particle–polymer composites often suffer from limited solar reflectance enhancement and insufficient environmental durability, impeding their large-scale deployment in practical PDRC applications. To address these limitations, we develop a novel PDRC film that features a hollow–porous architecture by uniformly dispersing hollow TiO2 nanoparticles (HTPs) within a polyvinylidene fluoride (PVDF) matrix. The resulting HTPs/PVDF composite film achieves a high solar reflectance of 94.7% (0.3–2.5 μm) and a mid-infrared emissivity of 95.3% (8–13 μm), enabling a maximum sub-ambient cooling of 11.8 °C under direct sunlight. In addition, the porous surface formed by the synergy between the hollow nanoparticles and phase-separated strategy provides excellent hydrophobicity and anti-fouling property, enhancing the long-term outdoor durability of the film. Overall, this scalable composite material demonstrates exceptional broadband optical selectivity, environmental stability, and fabrication feasibility, offering significant promise for practical applications in building envelopes, transportation systems, and outdoor electronics.
被动日间辐射冷却(PDRC)是一种辐射热管理方法,它在没有外部能量输入的情况下被动地实现阳光下的连续冷却。它在降低建筑能耗、缓解电力高峰需求和减缓全球变暖方面具有巨大潜力。然而,传统的无机颗粒-聚合物复合材料的太阳反射率增强有限,环境耐久性不足,阻碍了它们在实际PDRC应用中的大规模部署。为了解决这些限制,我们通过在聚偏氟乙烯(PVDF)基质中均匀分散中空TiO2纳米颗粒(HTPs),开发了一种具有中空多孔结构的新型PDRC薄膜。所得的HTPs/PVDF复合薄膜具有94.7% (0.3-2.5 μm)的高太阳反射率和95.3% (8-13 μm)的中红外发射率,在阳光直射下可实现11.8°C的最大亚环境冷却。此外,中空纳米颗粒与相分离策略协同形成的多孔表面提供了优异的疏水性和防污性能,增强了薄膜的长期户外耐久性。总体而言,这种可扩展的复合材料表现出卓越的宽带光学选择性,环境稳定性和制造可行性,为建筑围护结构,运输系统和户外电子产品的实际应用提供了重大承诺。
Stabilizing the Lithium Metal Interphase by Calendar Aging for Enhanced Battery Lifespan
Keith Sirengo, Shaista Jabeen, Irthasa Aazem, Amit Goswami, Libu Manjakkal, Fathima Laffir, Suresh C. Pillai
doi:10.1016/j.composites b.2025.113185
通过日历老化稳定锂金属界面以延长电池寿命
The lifespan of lithium metal batteries mainly depends on the stability of the solid electrolyte interphase (SEI). Battery aging is a non-chemical strategy that leverages the intrinsic reactivity of lithium metal and structural changes in the electrolyte to control SEI morphology, a crucial factor in interfacial stability. In the current study, we stabilize the SEI and extend the lifespan of lithium metal batteries by aging them for over 16 days before testing. This preconditioning process promotes the formation of a stable and porous SEI composed of solvent-anion complexes. The optimal performance of different cell configurations depends on a balance of ionic conductivity, SEI stability, electrochemical stability window, and the availability of the electrolyte during cycling. Consequently, 16 days of aging is optimal for a Li//Li cell, as it reduces the overpotential from 100 mV to 30 mV, and 30 days of aging is ideal for Li//Cu configuration, as it provides high CE and extends the cell's lifespan from 20 cycles to over 100 cycles. For high-voltage operations in LiCoO2//Li cells, 16-day-aged cells demonstrate a higher capacity of 172 mAh g-1 with a CE of 98%, surpassing that of fresh cells (146 mAh g-1 with a CE of 95%). Additionally, capacity retention improves significantly from 20 mAh g-1 to 100 mAh g-1 after 90 cycles. This work presents a straightforward approach that challenges the prevailing notion that electrolyte additives or complex formulations are essential to achieving a longer battery lifespan.
锂金属电池的寿命主要取决于固体电解质界面(SEI)的稳定性。电池老化是一种非化学策略,它利用锂金属的固有反应性和电解质的结构变化来控制SEI形态,这是影响界面稳定性的关键因素。在目前的研究中,我们通过在测试前将锂金属电池老化16天以上来稳定SEI并延长其寿命。这种预处理过程促进了由溶剂-阴离子复合物组成的稳定多孔SEI的形成。不同电池结构的最佳性能取决于离子电导率、SEI稳定性、电化学稳定性窗口和循环过程中电解质的可用性之间的平衡。因此,对于Li//Li电池来说,16天的老化是最理想的,因为它可以将过电位从100 mV降低到30 mV,而对于Li//Cu配置来说,30天的老化是理想的,因为它提供了高CE,并将电池的寿命从20次循环延长到100次以上。对于LiCoO2//Li电池的高压操作,16天老化电池的容量为172 mAh g-1, CE为98%,超过了新鲜电池(146 mAh g-1, CE为95%)。此外,90次循环后,容量保持率从20 mAh g-1显著提高到100 mAh g-1。这项工作提出了一种直截了当的方法,挑战了电解质添加剂或复杂配方对于实现更长的电池寿命至关重要的流行观念。
Recent advances on joining of CMCs heterogeneous joints for aeroengine industry: Residual stress control, high-temperature fillers development and SiC-Ni reaction suppression.
Xiukai Chen, Hong Bian, Zizhao Guan, Jing Wu, Xiaoguo Song, Jun Tao, Lu Chai, Shengpeng Hu, Danyang Lin
doi:10.1016/j.composites b.2025.113181
航空发动机用cmc非均相接头的连接研究进展:残余应力控制、高温填料开发和SiC-Ni反应抑制。
The integration of ceramic matrix composites (CMCs) with metals, particularly Ni-based superalloys, is crucial for the fabrication of next-generation aeroengine hot-section components. Among the various joining techniques, brazing is particularly prominent for its precision and ability to operate at high temperatures. However, its application faces three interrelated challenges: substantial residual stresses resulting from thermal expansion mis match, the limited temperature resistance of conventional brazing fillers, and adverse interfacial reactions, especially between SiC and Ni. This review systematically dissects recent advances in tackling these challenges. Specifically, it examines the efficacy of three methods for relieving residual stress, evaluates the performance and applicable temperature ranges of high-temperature fillers, and elucidates the underlying principles for suppressing the Ni-SiC interfacial reaction. Based on this comprehensive ana lysis, the review concludes by summarizing the prevailing challenges and outlining promising future development directions. The synthesized insights are expected to offer valuable guidance for the selection of suitable fillers and optimization strategies, thereby contributing to the development of robust CMC-metal components for advanced aeroengines.
陶瓷基复合材料(cmc)与金属,特别是镍基高温合金的集成,对于制造下一代航空发动机热截面部件至关重要。在各种连接技术中,钎焊以其精度和在高温下操作的能力而特别突出。然而,它的应用面临着三个相互关联的挑战:热膨胀失配导致的大量残余应力,传统钎焊填料的有限耐温性,以及不利的界面反应,特别是SiC和Ni之间的界面反应。本文系统剖析了应对这些挑战的最新进展。具体而言,研究了三种消除残余应力的方法的效果,评估了高温填料的性能和适用温度范围,并阐明了抑制Ni-SiC界面反应的基本原理。在此综合分析的基础上,总结了当前面临的挑战,并概述了未来有希望的发展方向。综合的见解有望为选择合适的填料和优化策略提供有价值的指导,从而有助于开发用于先进航空发动机的坚固的cmc -金属部件。
A data-driven synergistic optimization framework for thermo-mechanical properties of oriented fiber-reinforced aerogel composites
Chenbo He, Rui Yang, Zihan Wang, Guihua Tang, Cheng Bi, Jingjing Sun, Xiaoyan Wang, Chencheng Sun, Junning Li
doi:10.1016/j.composites b.2025.113189
面向纤维增强气凝胶复合材料热力学性能的数据驱动协同优化框架
In thermal protection systems particularly for aerospace and energy applications, the development of thermal insulation materials that simultaneously maintain mechanical robustness and dimensional stability under extreme conditions remains a challenge. Although oriented fiber-reinforced silica aerogel composites exhibit superior thermal and mechanical performances, their further application is hindered by the intrinsic trade-offs between microstructure and macroscopic properties. To address this limitation, this work proposes a data-driven synergistic optimization framework for oriented fiber-reinforced silica aerogel composites, facilitated by multiscale structure optimization to achieve a multifunctional integration. A nanoscale-informed thermo-mechanical theoretical model based on the realistic nanostructure of silica aerogels was developed to quantitatively correlate the density with thermal conductivity, elastic modulus, and thermal expansion coefficient. Furthermore, a hierarchically coupled multiscale modeling strategy for fiber-reinforced aerogel composites was proposed to achieve nano-micro-macro matched thermo-mechanical numerical predictions and experimentally validated using samples prepared in house. We developed a multi-objective optimization approach that combines a finite-element (FE) database with an artificial neural network (ANN) surrogate and the Non-dominated Sorting Genetic Algorithm II (NSGA-II). The integrated optimization delivers exceptional properties: ultralow thermal conductivity (0.0295 W·m-1·K-1), high elastic modulus (24.06 MPa), and low thermal expansion coefficient (4.87×10-6 K-1), at a fiber volume fraction of 12.2% and an orientation angle of 18.5˚. This work can resolve the thermo-mechanical performance–microstructure trade-offs, advancing the collaborative optimization of oriented fiber-reinforced aerogel composites. The present data-driven optimization framework could be straightforward to more general multifunctional thermal insulation composites.
在航空航天和能源应用的热保护系统中,开发在极端条件下同时保持机械坚固性和尺寸稳定性的隔热材料仍然是一个挑战。虽然取向纤维增强二氧化硅气凝胶复合材料具有优异的热学和力学性能,但其进一步应用受到微观结构和宏观性能之间内在权衡的阻碍。为了解决这一限制,本工作提出了一个数据驱动的定向纤维增强二氧化硅气凝胶复合材料协同优化框架,通过多尺度结构优化来实现多功能集成。基于真实的二氧化硅气凝胶纳米结构,建立了纳米尺度的热力学理论模型,定量地将密度与导热系数、弹性模量和热膨胀系数联系起来。此外,提出了一种分层耦合的纤维增强气凝胶复合材料多尺度建模策略,实现了纳米-微观-宏观匹配的热力学数值预测,并通过室内制备的样品进行了实验验证。我们开发了一种多目标优化方法,该方法将有限元(FE)数据库与人工神经网络(ANN)代理和非支配排序遗传算法II (NSGA-II)相结合。在纤维体积分数为12.2%、取向角为18.5˚的情况下,该材料具有超低导热系数(0.0295 W·m-1·K-1)、高弹性模量(24.06 MPa)和低热膨胀系数(4.87×10-6 K-1)等优异性能。这项工作可以解决热-机械性能-微观结构的权衡,推进定向纤维增强气凝胶复合材料的协同优化。目前的数据驱动优化框架可以直接用于更通用的多功能隔热复合材料。
Advances in Cellular Sandwich Composite Structures under Air-Blast Load Conditions: A State-of-the-Art Review
Vivek Kumar, Anoop Chawla, Devendra K. Dubey
doi:10.1016/j.composites b.2025.113192
空气爆炸荷载条件下蜂窝夹层复合材料结构的研究进展
Sandwich structures are increasingly adopted in critical applications exposed to blast threats, including defence, aerospace, marine, and civil infrastructure. The primary materials utilised in cellular sandwich structures are metallic honeycomb, metallic foam, polymer foam, auxetic honeycomb, and corrugated core, in conjunction with metallic or composite face sheets. To address the potential threat of explosive loading, it is crucial to gain a thorough understanding of the response mechanis ms of these systems subjected to air-blast loading. This article reviews research on the blast performance of sandwich composites, covering explosive blast loading in far-field, near-field, and contact events. It outlines experimental methods for replicating air-blast conditions and discusses numerical modelling of blast loads and material models. The article also presents studies on the deformation and failure of sandwich structures due to shock waves. The latter section of the paper examines the influence of materials, core-sheet interface, core thickness, curvature, environmental factors and preloading on the failure of sandwich structures, and outlines strategies utilised to improve the blast performance of sandwich composite structures.
夹层结构越来越多地应用于暴露于爆炸威胁的关键应用,包括国防、航空航天、海洋和民用基础设施。蜂窝夹层结构中使用的主要材料是金属蜂窝、金属泡沫、聚合物泡沫、消声蜂窝和波纹芯,与金属或复合材料面板结合使用。为了解决爆炸载荷的潜在威胁,深入了解这些系统在空气爆炸载荷下的响应机制是至关重要的。本文综述了夹层复合材料的爆炸性能研究,包括远场爆炸载荷、近场爆炸载荷和接触爆炸载荷。它概述了模拟空气爆炸条件的实验方法,并讨论了爆炸载荷和材料模型的数值模拟。本文还对夹层结构在激波作用下的变形和破坏进行了研究。论文的后一部分研究了材料、芯板界面、芯厚、曲率、环境因素和预压对夹层结构破坏的影响,并概述了用于改善夹层复合结构爆炸性能的策略。
A micromechanics-based numerical study on the viscoelastic damping in carbon nanotube/polymer nanocomposites
Kasra Abedi, Hasan Seraj, Reza Ansari, Mohammad Kazem Hassanzadeh-Aghdam, Jamaloddin Jamali, Saeid Sahmani
doi:10.1016/j.compscitech.2025.111449
基于微力学的碳纳米管/聚合物纳米复合材料粘弹性阻尼数值研究
The viscoelastic damping behavior of carbon nanotube (CNT)/polymer nanocomposites is investigated using a 3D numerical micromechanical model based on the finite element method (FEM) and a complex modulus approach. This model uniquely considers the collective behavior and interactions of multiple, randomly or directionally aligned CNTs within a representative volume element (RVE). To account for the frictional energy dissipation at the interface, a thin, weakened, and lossy interphase is simulated around the CNTs. The computational framework is validated by comparing its predictions for the elastic, viscoelastic creep, and damping properties with existing experimental data. Furthermore, the model is used to perform a sensitivity an alysis, exploring the influence of key nanostructural parameters on the effective loss factor of the nanocomposite. The results show that the effective loss factor is significantly enhanced by increasing the CNT volume fraction, a finding directly linked to the greater presence of the lossy interphase. Damping also increases with a thicker interphase and a higher relative loss factor of the interphase. The CNT aspect ratio is shown to have a notable effect, influencing the maximum damping achievable at a specific volume fraction. Finally, for aligned nanofillers, the study reveals a strong dependency of the directional loss factors on the CNT off-axis angle.
采用基于有限元法和复模量法的三维数值细观力学模型,研究了碳纳米管/聚合物纳米复合材料的粘弹性阻尼行为。该模型独特地考虑了代表性体积单元(RVE)内多个随机或定向排列的碳纳米管的集体行为和相互作用。为了考虑界面处的摩擦能量耗散,在CNTs周围模拟了一个薄的、减弱的、有损的界面相。通过将其对弹性、粘弹性蠕变和阻尼特性的预测与现有实验数据进行比较,验证了计算框架的有效性。此外,利用该模型进行了灵敏度分析,探讨了关键纳米结构参数对纳米复合材料有效损耗因子的影响。结果表明,通过增加碳纳米管体积分数,有效损耗因子显着增强,这一发现与损耗间相的存在直接相关。阻尼也随着间相厚度的增加和间相相对损耗因子的增加而增加。碳纳米管长径比具有显著的影响,影响在特定体积分数下可实现的最大阻尼。最后,对于定向纳米填料,研究揭示了碳纳米管离轴角对定向损失因子的强烈依赖性。
Acoustic emission an alysis of the interlaminar resistance increase during Mode I delamination with fibre bridging in composite laminates
Liaojun Yao, Zelin Chen, Zixian He, Stepan V. Lomov, Valter Carvelli, Sergei B. Sapozhnikov, Yonglyu He, Wensong Zhou, Yu Feng, Liyong Jia
doi:10.1016/j.compscitech.2025.111446
复合材料层合板纤维桥接I型分层时层间阻力增加的声发射分析
This study investigates the damage mechanis ms and associated interlaminar toughness (G_IC) increase in Mode I delamination with large-scale fibre bridging for a carbon fibre/epoxy composite. Using Acoustic Emission (AE), Wavelet Packet Transform (WPT), and scanning electron microscopy, four damage modes were identified: matrix cracking, interface debonding, fibre pullout and fibre breakage. These modes are combined in the fibre bridging process. Cluster an alysis of AE signals correlated each mode to a specific AE signature. The AE energy rate (AEER), defined as the cumulative AE energy per unit of crack propagation length, revealed that fibre pullout, with an AEER at least an order of magnitude higher than other modes, is the dominant toughening mechanis m for G_IC increase. Matrix cracking and interface debonding have a moderate effect, whereas fibre breakage has little effect on the G_IC increase. The magnitude of G_IC during delamination propagation also correlates with the instantaneous cumulative absolute energy per AE counts (d(AEE)/d(Counts)), defined as the ratio of the differential of cumulative AE absolute energy to the differential of cumulative counts. This ratio increases with delamination growth and finally stabilizes. These correlations provide a basis for evaluating damage mechanis ms and designing composite toughening strategies.
本研究对碳纤维/环氧树脂复合材料在大尺度纤维桥接作用下 I 型分层破坏机制及层间韧性(GIC)的提升进行了探究。通过声发射(AE)、小波包变换(WPT)和扫描电子显微镜,识别出了四种损伤模式:基体开裂、界面脱粘、纤维拔出和纤维断裂。这些模式在纤维桥接过程中相互结合。对声发射信号进行聚类分析,将每种模式与特定的声发射特征相关联。声发射能量率(AEER),即单位裂纹扩展长度的累积声发射能量,表明纤维拔出的 AEER 至少比其他模式高一个数量级,是 GIC 提升的主要增韧机制。基体开裂和界面脱粘有中等影响,而纤维断裂对 GIC 提升影响较小。分层扩展过程中 GIC 的大小也与每声发射计数的瞬时累积绝对能量(d(AEE)/d(Counts))相关,其定义为累积声发射绝对能量的微分与累积计数的微分之比。该比率随着分层的增长而增加,最终趋于稳定。这些相关性为评估损伤机制和设计复合材料增韧策略提供了依据。