首页/文章/ 详情

【新文速递】2025年11月13日复合材料SCI期刊最新文章

8分钟前浏览8
 
   

今日更新:Composite Structures 3 篇,Composites Part A: Applied Science and Manufacturing 3 篇,Composites Part B: Engineering 6 篇,Composites Science and Technology 2 篇

Composite Structures

Ballistic response of composite helmets engineered with cellular metamaterials

Tom Fisher, Zafer Kazancı, José Humberto S. Almeida

doi:10.1016/j.compstruct.2025.119846

 

细胞超材料复合头盔的弹道响应

This study investigates the integration of cellular metamaterials into combat helmet systems under ballistic loading, with a focus on realistic helmet geometries and both direct and oblique impact conditions. As global conflict zones increasingly demand lightweight and high-performance protective gear for enhanced mobility and survivability, auxetic structures, particularly the double arrowhead (DAH) topology, demonstrated substantial improvements in head protection, reducing injury metrics such as peak linear acceleration and head injury criterion (HIC) by over 50% compared to non-auxetic designs. Cellular helmet pad systems, explored here for the first time, achieved comparable or superior impact mitigation while halving system weight. Detailed damage evolution an alysis revealed that DAH structures exhibited more gradual and confined failure compared to re-entrant designs, further supporting their superior performance. These results offer valuable insights into the mechanics of impact resistance and set a new benchmark for the design of lightweight, high-performance protective equipment.

本研究研究了在弹道载荷下将细胞超材料集成到战斗头盔系统中,重点研究了现实头盔几何形状以及直接和倾斜冲击条件。随着全球冲突地区对轻型和高性能防护装备的需求日益增加,为了增强机动性和生存能力,辅助结构,特别是双箭头(DAH)拓扑结构,在头部保护方面取得了重大进展,与非辅助设计相比,减少了损伤指标,如峰值线性加速度和头部损伤标准(HIC),降低了50%以上。蜂窝头盔垫系统,在这里首次探索,实现了相当或更好的冲击缓解,同时减半系统重量。详细的损伤演化分析表明,与再入式设计相比,DAH结构表现出更渐进和有限的破坏,进一步支持了其优越的性能。这些结果为抗冲击机制提供了有价值的见解,并为轻量化、高性能防护设备的设计设定了新的基准。


A hierarchical homogenization framework for 3D-printed continuous fiber-reinforced composites: predicting flexural-torsional behavior of corrugated sandwich structures with computational efficiency

Jiansong Xu, Xiuxian Jia, Ye Yu, Xingsheng Sun, Guofu Ding

doi:10.1016/j.compstruct.2025.119853

三维打印连续纤维增强复合材料的分层均匀化框架:用计算效率预测波纹夹层结构的弯曲-扭转行为

This study systematically evaluated the flexural behavior of two types of 3D-printed continuous fiber-reinforced composite (CFRC) corrugated sandwich beams through an integrated approach of experimental tests, a detailed finite element model (DFEM), and an innovative hierarchical homogenization model (HHM). Additionally, the flexural and torsional behaviors of corrugated plates were ana lyzed using both DFEM and HHM. The HHM employs a multiscale strategy at the filament, corrugated unit-cell, and component levels to predict flexural and torsional responses of beams and plates. Results showed excellent agreement between HHM, DFEM, and experiments, and the HHM achieves markedly higher computational efficiency, improving calculation speed by 87.6%, 94.4%, and 99.4% for beam bending, plate bending, and plate torsion, respectively. The HHM enables rapid and versatile parametric studies of geometric variables, fiber layer counts, and material combinations, offering a practical alternative when DFEM becomes prohibitively expensive. This capability is particularly valuable for the fast design and optimization of corrugated cores and sandwich structures in industrial applications. The findings demonstrate that the proposed multiscale homogenization framework is accurate, efficient, and adaptable, providing a powerful tool for ana lyzing and optimizing the mechanical performance of 3D-printed CFRC corrugated components

本研究通过实验测试、详细有限元模型(DFEM)和创新的分层均质模型(HHM)的综合方法,系统地评估了两种类型的3d打印连续纤维增强复合材料(CFRC)波纹夹层梁的弯曲行为。此外,采用DFEM和HHM分析了波纹板的弯曲和扭转行为。HHM在细丝、波纹单元格和组件水平上采用多尺度策略来预测梁和板的弯曲和扭转响应。结果表明,HHM、DFEM与实验结果吻合良好,且HHM的计算效率显著提高,梁弯曲、板弯曲和板扭转的计算速度分别提高了87.6%、94.4%和99.4%。HHM能够对几何变量、纤维层数和材料组合进行快速和通用的参数研究,当DFEM变得非常昂贵时,提供了一种实用的替代方案。这种能力对于工业应用中瓦楞芯和夹层结构的快速设计和优化特别有价值。研究结果表明,所提出的多尺度均匀化框架准确、高效、适应性强,为分析和优化3d打印CFRC瓦楞组件的力学性能提供了有力的工具


Fiber–matrix interface strengthening via brine-derived MgO expansion agent

S.H. Chu, E.H. Yang, Jacob Fish, Cise Unluer

doi:10.1016/j.compstruct.2025.119854

卤水衍生MgO膨胀剂强化纤维-基体界面

Fiber-matrix interfacial transition zone (ITZ) is generally the weakest region in fiber reinforced concrete (FRC). This study aims to tailor the anisotropic fiber–matrix interface toward an asymptotic isotropic state. Self-prestressed concrete was engineered through the synergistic coupling of fibers and expansion agents, in which autogenous matrix expansion under fiber restraint generated active confinement during hardening and passive confinement under external loading. A novel process was developed to recover the MgO expansion agent from desalination brine and alkaline wastewater from ultra-high-performance concrete (UHPC) curing. Different dosages of MgO expansion agent were incorporated into polyvinyl alcohol fiber reinforced magnesium silicate hydrates (PVA-MSH) matrix. Single fiber pull-out tests revealed a 9.4–33.0% increase in fiber bond strength at 4–8% expansion agent. Quantitative nanoindentation an alysis through sophisticated techniques at microscale demonstrated that incorporating waste-derived MgO expansion agent enhanced the fiber–matrix ITZ by enhancing local stiffness and hardness, with the anisotropic index (AI) reduced by 50% at 4% expansion agent. This study advances low-cost, sustainable, high-performance concrete design with waste-derived materials.

纤维-基体界面过渡区(ITZ)通常是纤维混凝土(FRC)中最薄弱的区域。本研究旨在将各向异性纤维-基质界面调整为渐近各向同性状态。自预应力混凝土是通过纤维和膨胀剂的协同耦合来设计的,在纤维约束下,自基体膨胀在硬化过程中产生主动约束,在外载荷作用下产生被动约束。研究了从超高性能混凝土(UHPC)养护过程中脱盐盐水和碱性废水中回收MgO膨胀剂的新工艺。在聚乙烯醇纤维增强水合硅酸镁(PVA-MSH)基体中掺入不同剂量的氧化镁膨胀剂。单纤维拉拔试验表明,膨胀剂用量为4-8%时,纤维粘结强度提高9.4-33.0%。通过精密的微尺度纳米压痕定量分析技术表明,添加垃圾衍生的MgO膨胀剂通过提高纤维基体的局部刚度和硬度来增强纤维基体的ITZ,当膨胀剂含量为4%时,各向异性指数(AI)降低了50%。这项研究推进了低成本、可持续、高性能的废物衍生材料混凝土设计。


Composites Part A: Applied Science and Manufacturing

Determination of cryogenic interfacial parameters in carbon/epoxy composites and low-temperature failure mechanis m via a hybrid experiment-simulation-machine learning method

Yicheng Jiang, Wenjin Zhang, Xueqin Luo, Qianying Cen, Biao Xu, Ling Liu, Zhanjun Wu

doi:10.1016/j.compositesa.2025.109427

 

基于实验-模拟-机器学习的碳/环氧复合材料低温界面参数测定及低温失效机理

To address the critical challenge of determining reliable interfacial cohesive zone model (CZM) parameters for carbon fiber/epoxy composites (CFRPs) under cryogenic conditions,this study establishes a novelinverse framework integratingexperimental testing, multi-scale finite element modeling (FEM), machine learning (ML), and a traversal algorithm. (1) Experimental90° tensile/compressive tests (−183 °C–25 °C) show 32.9–91.7 % strengths/mod uli enhancement with cooling. (2) Microscaleunit-cell simulations on 90° tension/compression, incorporatingtemperature-dependent EP properties and predefined CZM parameters, generate temperature-CZM-strengths datasets. (3) The datasets are used to train a Sparrow Search Algorithm-BP neural network to establish temperature-CZM-strengths mappings. (4) A traversal algorithm is performed to constrain deviations to <3 % between experimental and ML-predicted strengths, thus deriving temperature-dependent CZM parameters. Based on this, mesoscale multi-fiber simulations on 90° tension/compression (at 25 °C, −55 °C, and −183 °C) demonstrate the reliability of CZM parameters, with simulated strengths deviating <8 % from experiments. The results reveal two fundamental mechanis ms: (1) With cooling from 25 °C to −183 °C, the CZM parameters increase exponentially: the normal strength rises from 41 to 55 MPa, the shear strength from 61.5 to 82.5 MPa, and the fracture energy from 3 to100 J/m2; (2) Failure modes shift from interface-dominated cracking (25 °C) to matrix-controlled fracture(−183 °C) due to thermal stress redistribution. This framework delivers validated cryogenic CZM parameters for the precision design of CFRP cryogenic structures

为了解决在低温条件下确定碳纤维/环氧复合材料(CFRPs)可靠的界面粘接区模型(CZM)参数的关键挑战,本研究建立了一个集实验测试、多尺度有限元建模(FEM)、机器学习(ML)和遍历算法为一体的新型逆框架。(1) 90°拉伸/压缩试验(−183 °C - 25 °C)显示,冷却后强度/模量增强32.9-91.7 %。(2) 90°拉伸/压缩的微尺度单元模拟,结合与温度相关的EP特性和预定义的CZM参数,生成温度-CZM强度数据集。(3)利用数据集训练Sparrow搜索算法- bp神经网络,建立温度- czm强度映射。(4)使用遍历算法将实验强度与ml预测强度之间的偏差约束为 <3 %,从而推导出与温度相关的CZM参数。基于此,在90°拉伸/压缩(25 °C, - 55 °C和- 183 °C)的中尺度多纤维模拟证明了CZM参数的可靠性,模拟强度与实验偏差 <8 %。结果揭示了两种基本机理:(1)随着冷却温度从25 °C降至−183 °C, CZM参数呈指数增长:法向强度从41增加到55 MPa,抗剪强度从61.5增加到82.5 MPa,断裂能从3增加到100 J/m2;(2)由于热应力重分布,破坏模式由界面主导的破裂(25 °C)向基质控制的破裂(−183 °C)转变。该框架为CFRP低温结构的精密设计提供了有效的低温CZM参数


Multiscale filler network design enables solid–liquid reversible thermal interface materials with high thermal conductivity and low thermal resistance

Jiahui Wangi, Shujun Cai, Yabiao Ma, Jian-Bin Xu, Jianfeng Fan, Xiaoliang Zeng, Rong Sun

doi:10.1016/j.compositesa.2025.109422

 

多尺度填料网络设计使固液可逆热界面材料具有高导热性和低热阻

Thermal interface materials (TIMs) for high-power electronics must combine high thermal conductivity, low thermal resistance, processability, and long-term reliability—requirements rarely met in a single material. Here, we present a multiscale filler network design for solid–liquid reversible TIMs, achieved by blending gradient-sized spherical alumina particles within a polydimethylsiloxane (PDMS) matrix. This hierarchical network forms continuous thermal-conduction pathways, endowing the TIMs with a high thermal conductivity of 7.1 W·m−1·K−1. Meanwhile, its reversible solid–liquid transition can be precisely controlled at a moderate yield stress of ∼2800 Pa, enabling both precision printing in the liquid-like state and mechanical stability in the solid-like state. The synergistic combination of high thermal conductivity and low viscosity results in a low thermal resistance of 28 mm2·K·W−1. When employed between a high-power GPU and a cold plate, the TIM featuring a solid-like state reduces the steady-state junction temperature by ≈22 °C and maintains excellent anti-pumping performance over 1000 thermal-shock cycles. This solid–liquid reversible, multiscale network approach provides a versatile platform for manufacturing-ready, high-performance TIMs in next-generation thermal management.

用于大功率电子器件的热界面材料(TIMs)必须结合高导热性、低热阻、可加工性和长期可靠性要求,这些要求在单一材料中很难满足。在这里,我们提出了一种多尺度填料网络设计,用于固体-液体可逆TIMs,通过在聚二甲基硅氧烷(PDMS)基质中混合梯度大小的球形氧化铝颗粒来实现。这种层次化的网络形成了连续的热传导途径,使TIMs具有7.1 W·m−1·K−1的高导热系数。同时,它的可逆固液转变可以在~ 2800 Pa的中等屈服应力下精确控制,既可以在类液体状态下精确打印,又可以在类固体状态下保持机械稳定性。高导热性和低粘度的协同作用使其热阻低至28 mm2·K·W−1。当在高功率GPU和冷板之间使用时,具有固体状状态的TIM将稳态结温降低约22 °C,并在1000次热冲击循环中保持优异的抗泵送性能。这种固液可逆的多尺度网络方法为下一代热管理中的高性能TIMs提供了一个通用平台。


High-performance ceramic thermal barrier coatings for carbon fiber-reinforced plastics developed by atmospheric plas ma spraying

Kandasamy Praveen, Heejin Kim, Juhyeong Lee, Ji-Hyun Cha, Min Wook Lee

doi:10.1016/j.compositesa.2025.109424

 

用常压等离子喷涂技术研制高性能碳纤维增强塑料陶瓷热障涂层

Developing ceramic-based thermal barrier coatings (TBCs) on the fabric materials is challenging because they lack stable surfaces for achieving high-quality coatings. Herein, we propose the direct deposition of TBCs on the surface of carbon fabric, followed by the manufacturing of carbon fiber-reinforced plastic (CFRP) composite and the evaluation of its high-temperature performance. Yttrium aluminum garnet (YAG) TBCs were deposited on 3K carbon fabric using atmospheric plas ma spray (APS). The porosity of the coatings was tailored using a pore-forming agent, polyether ether ketone (PEEK), and the CFRP composite was manufactured through the vacuum-assisted resin transfer molding (VARTM) process. The thermal barrier performance of the resulting TBC-CFRP composite was evaluated at various temperatures, and its mechanical properties were also assessed. The porous YAG TBC, with a porosity of approximately 35 %, exhibited a reduced thermal conductivity of 0.57–0.64 W/m·K in the 25–400 °C range. The thermal barrier performance tests revealed that the back-surface temperature of the TBC-CFRP composite specimen ranged from 253 to 305 °C, while the flame temperature was approximately 500–700 °C. The composite maintained its initial strength up to 500 °C and retained about 25 % even after exposure to 700 °C. This study demonstrates the feasibility of integrating porous YAG TBCs directly onto carbon fabrics to enhance the high-temperature resistance of CFRP composites while maintaining manufacturability through conventional VARTM processing.

在织物材料上开发基于陶瓷的热障涂层(tbc)具有挑战性,因为它们缺乏稳定的表面来实现高质量的涂层。在此,我们提出在碳纤维织物表面直接沉积tbc,然后制造碳纤维增强塑料(CFRP)复合材料并对其高温性能进行评价。采用常压等离子喷涂技术(APS)在3K碳织物上沉积钇铝石榴石(YAG) tbc。采用聚醚醚酮(PEEK)成孔剂调整涂层的孔隙度,并通过真空辅助树脂传递模塑(VARTM)工艺制备CFRP复合材料。在不同温度下对TBC-CFRP复合材料的热障性能进行了评价,并对其力学性能进行了评价。孔隙率约为35 %的多孔YAG TBC在25-400 °C范围内的导热系数降低了0.57-0.64 W/m·K。热障性能测试表明,TBC-CFRP复合材料试样的背表面温度范围为253 ~ 305 °C,火焰温度约为500 ~ 700 °C。复合材料在高达500 °C时保持其初始强度,即使在暴露于700 °C后也保持约25% %。本研究证明了将多孔YAG tbc直接集成到碳织物上的可行性,以提高CFRP复合材料的耐高温性能,同时通过传统的VARTM加工保持可制造性。


Composites Part B: Engineering

Multifunctional Foams with Oriented Bimodal Cellular Structure and Barbule-like Surface Fabricated by Bi-thermoplastic Expanding Microsphere Mold-opening Foaming

Haiying Zhan, Ziheng Zhang, Ao Yang, Jinghao Qian, Maxwell Fordjour Antwi-Afari, Xiao Li, Xin Jing, Binbin Dong, Hao-Yang Mi

doi:10.1016/j.composites b.2025.113173

 

双热塑性膨胀微球开模发泡制备具有定向双峰胞状结构和小管状表面的多功能泡沫材料

The growing demand for multifunctional lightweight materials integrating electromagnetic (EM) wave absorption, impact resistance, thermal insulation, and self-cleaning poses significant challenges due to structural and processing trade-offs. This study proposes a bi-thermoplastic expanding microsphere (Bi-TEM) mold-opening foaming (BTMOF) strategy to fabricate polypropylene/carbon nanotube/Fe3O4 (PP/CNT/Fe3O4) composite foams with oriented bimodal cells and barbule-like surface topology in a single step. The synergistic foaming of high- and low-temperature TEMs under mold-opening stress creates an oriented bimodal structure, while in-mold micro-template imprinting spontaneously constructs superhydrophobic surface microstructures. The oriented bimodal cells extend EM wave propagation paths, achieving a reflection loss (RL) of −47.82 dB and an effective absorption bandwidth (EAB) of 5.04 GHz using enhanced interfacial polarization and multiple reflections. The structure also enables 92.06% impact energy absorption efficiency through progressive folding and reduces thermal conductivity to 0.0336 W/(m·K) by phonon scattering. Meanwhile, the barbule-like surface ensures super-hydrophobicity (contact angle of 161.6 °; sliding angle of 3°), rendering the foam self-cleaning attributes. This BTMOF approach overcomes traditional scalability limitations, offering a facile route to fabricate multifunctional foams for aerospace, defense, and wearable electronics sectors.

对集电磁(EM)波吸收、抗冲击、隔热和自清洁为一体的多功能轻质材料的需求不断增长,由于结构和加工方面的权衡,带来了重大挑战。本研究提出了一种双热塑性膨胀微球(Bi-TEM)开模发泡(BTMOF)策略,用于一步制备聚丙烯/碳纳米管/Fe3O4 (PP/CNT/Fe3O4)复合泡沫,该泡沫具有定向双峰细胞和小棒状表面拓扑结构。高温和低温tem在开模应力作用下协同发泡形成定向双峰结构,而模内微模板印迹则自发形成超疏水表面微结构。定向双峰电池扩展了电磁波传播路径,利用增强的界面极化和多次反射,实现了−47.82 dB的反射损耗(RL)和5.04 GHz的有效吸收带宽(EAB)。该结构通过渐进式折叠使冲击能量吸收效率达到92.06%,通过声子散射使热导率降低到0.0336 W/(m·K)。同时,小管状表面保证了超疏水性(接触角161.6°,滑动角3°),使泡沫具有自洁特性。这种BTMOF方法克服了传统的可扩展性限制,为航空航天、国防和可穿戴电子行业制造多功能泡沫提供了一条便捷的途径。


Hollow TiO2-Embedded PVDF Films with Synergistic Optical Selectivity and Environmental Durability for Passive Daytime Radiative Cooling

Yuhan Zhang, Zhixin Sun, Ziqi Dong, Fangzheng Qi, Xiaodong Yang, Bo Xu, Guang-Ning Liu, Yiqiang Sun, Cuncheng Li

doi:10.1016/j.composites b.2025.113180

 

具有协同光学选择性和环境耐久性的中空tio2嵌入PVDF膜用于被动日间辐射冷却

Passive daytime radiative cooling (PDRC) is a radiative thermal management approach that passively enables continuous cooling under sunlight without external energy input. It offers great potential for reducing building energy consumption, alleviating peak electricity demand, and mitigating global warming. However, conventional inorganic particle–polymer composites often suffer from limited solar reflectance enhancement and insufficient environmental durability, impeding their large-scale deployment in practical PDRC applications. To address these limitations, we develop a novel PDRC film that features a hollow–porous architecture by uniformly dispersing hollow TiO2 nanoparticles (HTPs) within a polyvinylidene fluoride (PVDF) matrix. The resulting HTPs/PVDF composite film achieves a high solar reflectance of 94.7% (0.3–2.5 μm) and a mid-infrared emissivity of 95.3% (8–13 μm), enabling a maximum sub-ambient cooling of 11.8 °C under direct sunlight. In addition, the porous surface formed by the synergy between the hollow nanoparticles and phase-separated strategy provides excellent hydrophobicity and anti-fouling property, enhancing the long-term outdoor durability of the film. Overall, this scalable composite material demonstrates exceptional broadband optical selectivity, environmental stability, and fabrication feasibility, offering significant promise for practical applications in building envelopes, transportation systems, and outdoor electronics.

被动日间辐射冷却(PDRC)是一种辐射热管理方法,它在没有外部能量输入的情况下被动地实现阳光下的连续冷却。它在降低建筑能耗、缓解电力高峰需求和减缓全球变暖方面具有巨大潜力。然而,传统的无机颗粒-聚合物复合材料的太阳反射率增强有限,环境耐久性不足,阻碍了它们在实际PDRC应用中的大规模部署。为了解决这些限制,我们通过在聚偏氟乙烯(PVDF)基质中均匀分散中空TiO2纳米颗粒(HTPs),开发了一种具有中空多孔结构的新型PDRC薄膜。所得的HTPs/PVDF复合薄膜具有94.7% (0.3-2.5 μm)的高太阳反射率和95.3% (8-13 μm)的中红外发射率,在阳光直射下可实现11.8°C的最大亚环境冷却。此外,中空纳米颗粒与相分离策略协同形成的多孔表面提供了优异的疏水性和防污性能,增强了薄膜的长期户外耐久性。总体而言,这种可扩展的复合材料表现出卓越的宽带光学选择性,环境稳定性和制造可行性,为建筑围护结构,运输系统和户外电子产品的实际应用提供了重大承诺。


Stabilizing the Lithium Metal Interphase by Calendar Aging for Enhanced Battery Lifespan

Keith Sirengo, Shaista Jabeen, Irthasa Aazem, Amit Goswami, Libu Manjakkal, Fathima Laffir, Suresh C. Pillai

doi:10.1016/j.composites b.2025.113185

通过日历老化稳定锂金属界面以延长电池寿命

The lifespan of lithium metal batteries mainly depends on the stability of the solid electrolyte interphase (SEI). Battery aging is a non-chemical strategy that leverages the intrinsic reactivity of lithium metal and structural changes in the electrolyte to control SEI morphology, a crucial factor in interfacial stability. In the current study, we stabilize the SEI and extend the lifespan of lithium metal batteries by aging them for over 16 days before testing. This preconditioning process promotes the formation of a stable and porous SEI composed of solvent-anion complexes. The optimal performance of different cell configurations depends on a balance of ionic conductivity, SEI stability, electrochemical stability window, and the availability of the electrolyte during cycling. Consequently, 16 days of aging is optimal for a Li//Li cell, as it reduces the overpotential from 100 mV to 30 mV, and 30 days of aging is ideal for Li//Cu configuration, as it provides high CE and extends the cell's lifespan from 20 cycles to over 100 cycles. For high-voltage operations in LiCoO2//Li cells, 16-day-aged cells demonstrate a higher capacity of 172 mAh g-1 with a CE of 98%, surpassing that of fresh cells (146 mAh g-1 with a CE of 95%). Additionally, capacity retention improves significantly from 20 mAh g-1 to 100 mAh g-1 after 90 cycles. This work presents a straightforward approach that challenges the prevailing notion that electrolyte additives or complex formulations are essential to achieving a longer battery lifespan.

锂金属电池的寿命主要取决于固体电解质界面(SEI)的稳定性。电池老化是一种非化学策略,它利用锂金属的固有反应性和电解质的结构变化来控制SEI形态,这是影响界面稳定性的关键因素。在目前的研究中,我们通过在测试前将锂金属电池老化16天以上来稳定SEI并延长其寿命。这种预处理过程促进了由溶剂-阴离子复合物组成的稳定多孔SEI的形成。不同电池结构的最佳性能取决于离子电导率、SEI稳定性、电化学稳定性窗口和循环过程中电解质的可用性之间的平衡。因此,对于Li//Li电池来说,16天的老化是最理想的,因为它可以将过电位从100 mV降低到30 mV,而对于Li//Cu配置来说,30天的老化是理想的,因为它提供了高CE,并将电池的寿命从20次循环延长到100次以上。对于LiCoO2//Li电池的高压操作,16天老化电池的容量为172 mAh g-1, CE为98%,超过了新鲜电池(146 mAh g-1, CE为95%)。此外,90次循环后,容量保持率从20 mAh g-1显著提高到100 mAh g-1。这项工作提出了一种直截了当的方法,挑战了电解质添加剂或复杂配方对于实现更长的电池寿命至关重要的流行观念。


Recent advances on joining of CMCs heterogeneous joints for aeroengine industry: Residual stress control, high-temperature fillers development and SiC-Ni reaction suppression.

Xiukai Chen, Hong Bian, Zizhao Guan, Jing Wu, Xiaoguo Song, Jun Tao, Lu Chai, Shengpeng Hu, Danyang Lin

doi:10.1016/j.composites b.2025.113181

航空发动机用cmc非均相接头的连接研究进展:残余应力控制、高温填料开发和SiC-Ni反应抑制。

The integration of ceramic matrix composites (CMCs) with metals, particularly Ni-based superalloys, is crucial for the fabrication of next-generation aeroengine hot-section components. Among the various joining techniques, brazing is particularly prominent for its precision and ability to operate at high temperatures. However, its application faces three interrelated challenges: substantial residual stresses resulting from thermal expansion mis match, the limited temperature resistance of conventional brazing fillers, and adverse interfacial reactions, especially between SiC and Ni. This review systematically dissects recent advances in tackling these challenges. Specifically, it examines the efficacy of three methods for relieving residual stress, evaluates the performance and applicable temperature ranges of high-temperature fillers, and elucidates the underlying principles for suppressing the Ni-SiC interfacial reaction. Based on this comprehensive ana lysis, the review concludes by summarizing the prevailing challenges and outlining promising future development directions. The synthesized insights are expected to offer valuable guidance for the selection of suitable fillers and optimization strategies, thereby contributing to the development of robust CMC-metal components for advanced aeroengines.

陶瓷基复合材料(cmc)与金属,特别是镍基高温合金的集成,对于制造下一代航空发动机热截面部件至关重要。在各种连接技术中,钎焊以其精度和在高温下操作的能力而特别突出。然而,它的应用面临着三个相互关联的挑战:热膨胀失配导致的大量残余应力,传统钎焊填料的有限耐温性,以及不利的界面反应,特别是SiC和Ni之间的界面反应。本文系统剖析了应对这些挑战的最新进展。具体而言,研究了三种消除残余应力的方法的效果,评估了高温填料的性能和适用温度范围,并阐明了抑制Ni-SiC界面反应的基本原理。在此综合分析的基础上,总结了当前面临的挑战,并概述了未来有希望的发展方向。综合的见解有望为选择合适的填料和优化策略提供有价值的指导,从而有助于开发用于先进航空发动机的坚固的cmc -金属部件。


A data-driven synergistic optimization framework for thermo-mechanical properties of oriented fiber-reinforced aerogel composites

Chenbo He, Rui Yang, Zihan Wang, Guihua Tang, Cheng Bi, Jingjing Sun, Xiaoyan Wang, Chencheng Sun, Junning Li

doi:10.1016/j.composites b.2025.113189

 

面向纤维增强气凝胶复合材料热力学性能的数据驱动协同优化框架

In thermal protection systems particularly for aerospace and energy applications, the development of thermal insulation materials that simultaneously maintain mechanical robustness and dimensional stability under extreme conditions remains a challenge. Although oriented fiber-reinforced silica aerogel composites exhibit superior thermal and mechanical performances, their further application is hindered by the intrinsic trade-offs between microstructure and macroscopic properties. To address this limitation, this work proposes a data-driven synergistic optimization framework for oriented fiber-reinforced silica aerogel composites, facilitated by multiscale structure optimization to achieve a multifunctional integration. A nanoscale-informed thermo-mechanical theoretical model based on the realistic nanostructure of silica aerogels was developed to quantitatively correlate the density with thermal conductivity, elastic modulus, and thermal expansion coefficient. Furthermore, a hierarchically coupled multiscale modeling strategy for fiber-reinforced aerogel composites was proposed to achieve nano-micro-macro matched thermo-mechanical numerical predictions and experimentally validated using samples prepared in house. We developed a multi-objective optimization approach that combines a finite-element (FE) database with an artificial neural network (ANN) surrogate and the Non-dominated Sorting Genetic Algorithm II (NSGA-II). The integrated optimization delivers exceptional properties: ultralow thermal conductivity (0.0295 W·m-1·K-1), high elastic modulus (24.06 MPa), and low thermal expansion coefficient (4.87×10-6 K-1), at a fiber volume fraction of 12.2% and an orientation angle of 18.5˚. This work can resolve the thermo-mechanical performance–microstructure trade-offs, advancing the collaborative optimization of oriented fiber-reinforced aerogel composites. The present data-driven optimization framework could be straightforward to more general multifunctional thermal insulation composites.

在航空航天和能源应用的热保护系统中,开发在极端条件下同时保持机械坚固性和尺寸稳定性的隔热材料仍然是一个挑战。虽然取向纤维增强二氧化硅气凝胶复合材料具有优异的热学和力学性能,但其进一步应用受到微观结构和宏观性能之间内在权衡的阻碍。为了解决这一限制,本工作提出了一个数据驱动的定向纤维增强二氧化硅气凝胶复合材料协同优化框架,通过多尺度结构优化来实现多功能集成。基于真实的二氧化硅气凝胶纳米结构,建立了纳米尺度的热力学理论模型,定量地将密度与导热系数、弹性模量和热膨胀系数联系起来。此外,提出了一种分层耦合的纤维增强气凝胶复合材料多尺度建模策略,实现了纳米-微观-宏观匹配的热力学数值预测,并通过室内制备的样品进行了实验验证。我们开发了一种多目标优化方法,该方法将有限元(FE)数据库与人工神经网络(ANN)代理和非支配排序遗传算法II (NSGA-II)相结合。在纤维体积分数为12.2%、取向角为18.5˚的情况下,该材料具有超低导热系数(0.0295 W·m-1·K-1)、高弹性模量(24.06 MPa)和低热膨胀系数(4.87×10-6 K-1)等优异性能。这项工作可以解决热-机械性能-微观结构的权衡,推进定向纤维增强气凝胶复合材料的协同优化。目前的数据驱动优化框架可以直接用于更通用的多功能隔热复合材料。


Advances in Cellular Sandwich Composite Structures under Air-Blast Load Conditions: A State-of-the-Art Review

Vivek Kumar, Anoop Chawla, Devendra K. Dubey

doi:10.1016/j.composites b.2025.113192

空气爆炸荷载条件下蜂窝夹层复合材料结构的研究进展

Sandwich structures are increasingly adopted in critical applications exposed to blast threats, including defence, aerospace, marine, and civil infrastructure. The primary materials utilised in cellular sandwich structures are metallic honeycomb, metallic foam, polymer foam, auxetic honeycomb, and corrugated core, in conjunction with metallic or composite face sheets. To address the potential threat of explosive loading, it is crucial to gain a thorough understanding of the response mechanis ms of these systems subjected to air-blast loading. This article reviews research on the blast performance of sandwich composites, covering explosive blast loading in far-field, near-field, and contact events. It outlines experimental methods for replicating air-blast conditions and discusses numerical modelling of blast loads and material models. The article also presents studies on the deformation and failure of sandwich structures due to shock waves. The latter section of the paper examines the influence of materials, core-sheet interface, core thickness, curvature, environmental factors and preloading on the failure of sandwich structures, and outlines strategies utilised to improve the blast performance of sandwich composite structures.

夹层结构越来越多地应用于暴露于爆炸威胁的关键应用,包括国防、航空航天、海洋和民用基础设施。蜂窝夹层结构中使用的主要材料是金属蜂窝、金属泡沫、聚合物泡沫、消声蜂窝和波纹芯,与金属或复合材料面板结合使用。为了解决爆炸载荷的潜在威胁,深入了解这些系统在空气爆炸载荷下的响应机制是至关重要的。本文综述了夹层复合材料的爆炸性能研究,包括远场爆炸载荷、近场爆炸载荷和接触爆炸载荷。它概述了模拟空气爆炸条件的实验方法,并讨论了爆炸载荷和材料模型的数值模拟。本文还对夹层结构在激波作用下的变形和破坏进行了研究。论文的后一部分研究了材料、芯板界面、芯厚、曲率、环境因素和预压对夹层结构破坏的影响,并概述了用于改善夹层复合结构爆炸性能的策略。


Composites Science and Technology

A micromechanics-based numerical study on the viscoelastic damping in carbon nanotube/polymer nanocomposites

Kasra Abedi, Hasan Seraj, Reza Ansari, Mohammad Kazem Hassanzadeh-Aghdam, Jamaloddin Jamali, Saeid Sahmani

doi:10.1016/j.compscitech.2025.111449

 

基于微力学的碳纳米管/聚合物纳米复合材料粘弹性阻尼数值研究

The viscoelastic damping behavior of carbon nanotube (CNT)/polymer nanocomposites is investigated using a 3D numerical micromechanical model based on the finite element method (FEM) and a complex modulus approach. This model uniquely considers the collective behavior and interactions of multiple, randomly or directionally aligned CNTs within a representative volume element (RVE). To account for the frictional energy dissipation at the interface, a thin, weakened, and lossy interphase is simulated around the CNTs. The computational framework is validated by comparing its predictions for the elastic, viscoelastic creep, and damping properties with existing experimental data. Furthermore, the model is used to perform a sensitivity an alysis, exploring the influence of key nanostructural parameters on the effective loss factor of the nanocomposite. The results show that the effective loss factor is significantly enhanced by increasing the CNT volume fraction, a finding directly linked to the greater presence of the lossy interphase. Damping also increases with a thicker interphase and a higher relative loss factor of the interphase. The CNT aspect ratio is shown to have a notable effect, influencing the maximum damping achievable at a specific volume fraction. Finally, for aligned nanofillers, the study reveals a strong dependency of the directional loss factors on the CNT off-axis angle.

采用基于有限元法和复模量法的三维数值细观力学模型,研究了碳纳米管/聚合物纳米复合材料的粘弹性阻尼行为。该模型独特地考虑了代表性体积单元(RVE)内多个随机或定向排列的碳纳米管的集体行为和相互作用。为了考虑界面处的摩擦能量耗散,在CNTs周围模拟了一个薄的、减弱的、有损的界面相。通过将其对弹性、粘弹性蠕变和阻尼特性的预测与现有实验数据进行比较,验证了计算框架的有效性。此外,利用该模型进行了灵敏度分析,探讨了关键纳米结构参数对纳米复合材料有效损耗因子的影响。结果表明,通过增加碳纳米管体积分数,有效损耗因子显着增强,这一发现与损耗间相的存在直接相关。阻尼也随着间相厚度的增加和间相相对损耗因子的增加而增加。碳纳米管长径比具有显著的影响,影响在特定体积分数下可实现的最大阻尼。最后,对于定向纳米填料,研究揭示了碳纳米管离轴角对定向损失因子的强烈依赖性。


Acoustic emission an alysis of the interlaminar resistance increase during Mode I delamination with fibre bridging in composite laminates

Liaojun Yao, Zelin Chen, Zixian He, Stepan V. Lomov, Valter Carvelli, Sergei B. Sapozhnikov, Yonglyu He, Wensong Zhou, Yu Feng, Liyong Jia

doi:10.1016/j.compscitech.2025.111446

 

复合材料层合板纤维桥接I型分层时层间阻力增加的声发射分析

This study investigates the damage mechanis ms and associated interlaminar toughness (G_IC) increase in Mode I delamination with large-scale fibre bridging for a carbon fibre/epoxy composite. Using Acoustic Emission (AE), Wavelet Packet Transform (WPT), and scanning electron microscopy, four damage modes were identified: matrix cracking, interface debonding, fibre pullout and fibre breakage. These modes are combined in the fibre bridging process. Cluster an alysis of AE signals correlated each mode to a specific AE signature. The AE energy rate (AEER), defined as the cumulative AE energy per unit of crack propagation length, revealed that fibre pullout, with an AEER at least an order of magnitude higher than other modes, is the dominant toughening mechanis m for G_IC increase. Matrix cracking and interface debonding have a moderate effect, whereas fibre breakage has little effect on the G_IC increase. The magnitude of G_IC during delamination propagation also correlates with the instantaneous cumulative absolute energy per AE counts (d(AEE)/d(Counts)), defined as the ratio of the differential of cumulative AE absolute energy to the differential of cumulative counts. This ratio increases with delamination growth and finally stabilizes. These correlations provide a basis for evaluating damage mechanis ms and designing composite toughening strategies.

本研究对碳纤维/环氧树脂复合材料在大尺度纤维桥接作用下 I 型分层破坏机制及层间韧性(GIC)的提升进行了探究。通过声发射(AE)、小波包变换(WPT)和扫描电子显微镜,识别出了四种损伤模式:基体开裂、界面脱粘、纤维拔出和纤维断裂。这些模式在纤维桥接过程中相互结合。对声发射信号进行聚类分析,将每种模式与特定的声发射特征相关联。声发射能量率(AEER),即单位裂纹扩展长度的累积声发射能量,表明纤维拔出的 AEER 至少比其他模式高一个数量级,是 GIC 提升的主要增韧机制。基体开裂和界面脱粘有中等影响,而纤维断裂对 GIC 提升影响较小。分层扩展过程中 GIC 的大小也与每声发射计数的瞬时累积绝对能量(d(AEE)/d(Counts))相关,其定义为累积声发射绝对能量的微分与累积计数的微分之比。该比率随着分层的增长而增加,最终趋于稳定。这些相关性为评估损伤机制和设计复合材料增韧策略提供了依据。



 

来源:复合材料力学仿真Composites FEM
ACTMechanicalMaxwellAdditiveOpticalHPC断裂复合材料化学光学通用航空航天建筑电力裂纹BIM理论爆炸多尺度
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2025-11-22
最近编辑:8分钟前
Tansu
签名征集中
获赞 12粉丝 6文章 958课程 0
点赞
收藏
作者推荐

【新文速递】2025年11月14日复合材料SCI期刊最新文章

今日更新:Composite Structures 3 篇,Composites Part A: Applied Science and Manufacturing 4 篇,Composites Part B: Engineering 3 篇,Composites Science and Technology 1 篇Composite StructuresFinite element modeling and an alysis of woven roving mat reinforced shape memory polymer composite bar under torsionMd Saad Hussain Barsania, K.V. Nagendra Gopaldoi:10.1016/j.compstruct.2025.119849扭转作用下形状记忆聚合物复合棒材编织粗纱垫的有限元建模与分析The finite element an alysis of a thermally stimulated woven roving mat (WRM) reinforced shape memory polymer composite (S MPC) bar under torsion is presented in this paper. A rectangular bar made of an in-house realized S MPC consisting of layers of shape memory polymer (S MP) and WRM fibers is subjected to a thermomechanical cycle that includes heating the specimen to a high temperature (Th) above the glass transition temperature (Tg), applying an angular twist, and then cooling the deformed configuration to a low temperature (Tl), followed by unloading to achieve a temporary shape, and finally reheating to regain the original shape. A thermodynamically consistent 3D constitutive model for thermoset S MPs is implemented numerically to model the stress–strain behavior of the S MP. Following initial validation studies, numerical simulations were performed to obtain and quantify the relative shape memory behavior of an in-house synthesized S MP and WRM-reinforced S MPC in terms of shape fixity and recovery parameters for different angular twists. The results obtained show that the addition of a s mall volume fraction of WRM fibers significantly improves the mechanical performance and accelerates the shape recovery while reducing the shape memory behavior. This is significant in the use of reinforced S MPC for structural applications.本文介绍了在扭转作用下对热刺 激编织粗纱毡(WRM)增强形状记忆聚合物复合材料(S MPC)棒进行有限元分析。采用由内部研发的形状记忆聚合物(S MP)层和 WRM 纤维层组成的矩形 S MPC 棒,对其施加热机械循环,包括将试样加热至高于玻璃化转变温度(Tg)的高温(Th),施加角扭转,然后将变形构型冷却至低温(Tl),卸载以获得临时形状,最后重新加热以恢复原始形状。采用热力学一致的三维本构模型对热固性 S MP 进行数值模拟,以模拟 S MP 的应力 - 应变行为。在初步验证研究之后,进行了数值模拟,以获取并量化内部合成的 S MP 和 WRM 增强 S MPC 在不同角扭转下的相对形状记忆行为,包括形状固定性和恢复参数。实验结果表明,添加少量体积分数的 WRM 纤维显著提高了机械性能,加快了形状恢复速度,但降低了形状记忆行为。这对于增强型形状记忆聚合物复合材料在结构应用中的使用具有重要意义。Data-based damage evolution an alysis of chopped carbon fiber sheet molding compound compositeKaifeng Wang, Zhengyu Ma, Li Yang, Hongye Zhang, Zhilin Sun, Jingjing Lidoi:10.1016/j.compstruct.2025.119857基于数据的短切碳纤维板材成型复合材料损伤演化分析The study investigates the damage evolution mechanis ms in chopped carbon fiber sheet molding compound (CF-S MC) composites subjected to uniaxial tensile loading through a data-driven approach integrating micro-X-ray computed tomography (μXCT) and multivariate correlation an alysis. Initially, μXCT imaging provided comprehensive in-situ characterization of internal microstructural damage processes, identifying fiber orientation, fiber volume fraction, and loading conditions as critical variables influencing crack propagation. Subsequently, a quantitative damage evolution prediction model was developed. A data-based approach was employed to translate complex multi-variable nonlinear relationships into a single-variable ana lysis. The model introduces a Damage Evolution Index (DEI), effectively capturing the influence of identified critical factors on crack growth rate. Validation using independent tensile testing datasets confirmed the accuracy and generality of the proposed prediction framework, demonstrating its potential applicability in advanced structural health monitoring and damage prognosis for composites采用微x射线计算机断层扫描(μXCT)和多变量相关分析相结合的数据驱动方法,研究了短切碳纤维薄板模压复合材料(CF-S MC)在单轴拉伸载荷作用下的损伤演化机制。最初,μXCT成像提供了内部微结构损伤过程的综合原位表征,确定了纤维取向、纤维体积分数和加载条件是影响裂纹扩展的关键变量。在此基础上,建立了损伤演化定量预测模型。采用基于数据的方法将复杂的多变量非线性关系转化为单变量分析。该模型引入了损伤演化指数(DEI),有效地捕捉了识别出的关键因素对裂纹扩展速率的影响。使用独立的拉伸测试数据集进行验证,证实了所提出的预测框架的准确性和通用性,证明了其在复合材料高级结构健康监测和损伤预测中的潜在适用性Improving energy absorption in structures using tubular TPMS structure optimization and printing strategiesHengyu Zhang, Jun Zhao, Chao Xu, Ruqing Huo, Qingsong Niudoi:10.1016/j.compstruct.2025.119820利用管状TPMS结构优化和打印策略提高结构吸能This study proposes novel heteromorphic triply periodic minimal surface (TPMS) structures fabricated via selective laser melting (SLM). Double-layer circular tubes and tubular TPMS fillers, as well as filled structures and integrated printing structures, were respectively prepared. Quasi-static compression experiments validated finite element an alysis (FEA) accuracy, demonstrating excellent consistency. The validated FEA model assessed crashworthiness of tubular TPMS, filled structures, and integrated printed designs across varying relative densities. Results indicate integrated printed structures achieve the highest specific energy absorption (SEA), surpassing filled structures and outperforming standalone tubular TPMS. Heteromorphic TPMS uniquely combines low initial peak force (Fi) with elevated stress plateaus at equivalent relative densities, enhancing both energy absorption and safety. Multi-morphology TPMS enables gradient energy absorption, reducing Fi at identical compression distances. Monolithic integration improves structural stiffness and minimizes force fluctuations during compression, significantly enhancing crash resistance and safety. Remarkably, integrated printing improves SEA by up to 85.1% and crush force efficiency (CFE) by 46.6% versus benchmark structures.本研究提出了一种新的异型三周期最小表面(TPMS)结构,该结构是通过选择性激光熔化(SLM)制备的。分别制备了双层圆管和管状TPMS填料,以及填充结构和集成印刷结构。准静态压缩实验验证了有限元分析(FEA)的准确性,证明了良好的一致性。经过验证的有限元模型评估了不同相对密度下管状TPMS、填充结构和集成打印设计的耐撞性。结果表明,集成印刷结构具有最高的比能吸收(SEA),超过填充结构,优于单独的管状TPMS。异型TPMS独特地结合了低初始峰值力(Fi)和等效相对密度下的高应力平台,增强了能量吸收和安全性。多形态TPMS可以实现梯度能量吸收,在相同的压缩距离下降低Fi。整体集成提高了结构刚度,最大限度地减少了压缩过程中的力波动,显著提高了抗碰撞性和安全性。值得注意的是,与基准结构相比,集成印刷将SEA提高了85.1%,粉碎力效率(CFE)提高了46.6%。Composites Part A: Applied Science and ManufacturingA degradation-informed phase-field model for matrix-dominated high-cycle fatigue in 3D composite laminatesHarshdeep Sharma, Akhilendra Singhdoi:10.1016/j.compositesa.2025.109377 三维复合材料层合板基体主导高周疲劳的退化通知相场模型This work presents a phase-field framework for modeling matrix-dominated high-cycle fatigue (HCF) in three-dimensional fiber-reinforced composite laminates. The model captures intralaminar damage mechanis ms such as matrix splitting and shear-driven cracking under high-cycle loading, with crack propagation primarily aligning along fiber directions and no significant fiber rupture observed. A tailored anisotropic fatigue degradation formulation is proposed, coupled with an adaptive cycle-jump strategy termed Degradation-Informed Constant Load Accumulation (D-CLA), which significantly improves computational efficiency. The fatigue history variable is defined using degraded strain energy density to enhance physical consistency. Numerical studies on both two- and three-dimensional laminate configurations demonstrate the framework’s predictive capability in capturing fatigue crack growth and S–N behavior, showing strong agreement with literature and experimental trends.本文提出了一种用于模拟三维纤维增强复合材料层合板中以基体为主的高周疲劳(HCF)的相场框架。该模型能够捕捉到在高周载荷作用下层内损伤机制,如基体开裂和剪切驱动裂纹扩展,裂纹扩展主要沿纤维方向,且未观察到明显的纤维断裂。提出了一个定制的各向异性疲劳退化公式,并结合了一种称为退化信息恒定载荷累积(D-CLA)的自适应循环跳跃策略,显著提高了计算效率。疲劳历史变量通过退化应变能密度来定义,以增强物理一致性。对二维和三维层合板结构的数值研究证明了该框架在捕捉疲劳裂纹扩展和 S-N 行为方面的预测能力,与文献和实验趋势高度一致。Energetic deposition of Polymer-Based High-Entropy composite film for aerospace applicationsYifan Zhang, Shunian Chen, Qian Li, Shengqi Dai, Qingyan Hou, Pan Pang, Lin Chen, Bin Liaodoi:10.1016/j.compositesa.2025.109425 航空航天用聚合物基高熵复合薄膜的高能沉积To address the degradation challenges faced by spacecraft-exposed polymers from atomic oxygen (AO) erosion, radiation damage, and electrostatic hazards (ESC/ESD), we fabricated innovative (TiAlCrSiV)Nx/TiAlCrSiV-CPI(PEI) composite films with multifunctional durability. Through advanced spectroscopy and microstructural characterization, the engineered interface demonstrates synergistic chelation-crosslinking interactions that optimize interfacial cohesion and fracture toughness. The exceptional AO resistance stems from the cubic high entropy nitride layer acting as an effective diffusion barrier, achieving ultralow erosion yield values (4.91 ± 0.12 and 4.38 ± 0.16 × 10-26 cm3 atom−1). Radiation tolerance was verified through N+ irradiation tests, revealing slight dislocation and lattice swelling (0.6 %) in the stabilized nanocrystalline. In addition, the customized composition and architecture exhibit sufficient electrostatic dissipation capability to resolve potential ESC/ESD issues. This fabrication strategy integrating energetic ion beam with high entropy interfacial regulation presents a viable solution for developing next-generation spacecraft materials capable of withstanding space synergistic effects.为了解决航天器暴露的聚合物面临的原子氧(AO)侵蚀,辐射损伤和静电危害(ESC/ESD)的降解挑战,我们制造了具有多功能耐久性的创新(TiAlCrSiV)Nx/TiAlCrSiV- cpi (PEI)复合薄膜。通过先进的光谱和微观结构表征,工程界面显示出协同螯合交联相互作用,优化了界面凝聚力和断裂韧性。优异的AO阻力源于立方高熵氮化层作为有效的扩散屏障,实现了超低的侵蚀屈服值(4.91 ± 0.12和4.38 ± 0.16 × 10-26 cm3原子−1)。通过N+辐照试验验证了纳米晶的耐辐照性,发现稳定的纳米晶中有轻微的位错和晶格膨胀(0.6 %)。此外,定制的结构和结构具有足够的静电耗散能力,可以解决潜在的ESC/ESD问题。这种将高能离子束与高熵界面调控相结合的制造策略为开发能够承受空间协同效应的下一代航天器材料提供了一种可行的解决方案。Synergistic regulation of mechanical and physical properties in SiC nanowire dispersion-strengthened copper via core–shell coatingLu Han, Zetao Mou, Yuan Huang, Yongchang Liu, Zumin Wangdoi:10.1016/j.compositesa.2025.109429碳化硅纳米线分散增强铜的核壳涂层对力学和物理性能的协同调节A copper (Cu) matrix composite reinforced with discontinuous SiC nanowires (SICNWs) was developed through sintering of core–shell Cu-coated SICNW powders followed by high-pressure torsion processing. Through this process, a uniform dispersion of 1.0 vol% SICNWs within the Cu matrix was successfully achieved, and these individual nanowires are distributed across the grain boundaries (GBs) and embedded within the grain interiors, which significantly improved the interfacial bonding strength of the composite. The as-prepared composite exhibited exceptional comprehensive properties: yield strength ∼ 484 MPa, ultimate tensile strength ∼ 499 MPa, electrical conductivity ∼ 82 % IACS (International Annealed Cu Standard), and thermal conductivity ∼ 270 W/(m·K). Microstructural ana lysis revealed that the dispersed SICNWs effectively pinned GBs, and thus can inhibit the migration of GBs under heat treatment, significantly improving the thermal stability. This work provides a novel paradigm for designing fiber-reinforced metal matrix composites that achieve a well-balanced combination of mechanical, thermal, and electrical properties.采用核壳包覆碳化硅纳米线烧结并进行高压扭转处理的方法,制备了不连续碳化硅纳米线增强铜基复合材料。通过该工艺,成功地实现了1.0 vol%的SICNWs在Cu基体内的均匀分散,并且这些单独的纳米线分布在晶界(GBs)上并嵌入晶粒内部,显著提高了复合材料的界面结合强度。和综合表现出特殊的综合属性:屈服强度 ∼  484 MPa,极限抗拉强度 ∼  499 MPa,导电性 ∼ 82 % IACS(国际退火铜标准),和热导率 ∼ 270 W / (m·K)。显微组织分析表明,分散的SICNWs有效地固定了GBs,从而抑制了GBs在热处理过程中的迁移,显著提高了热稳定性。这项工作为设计纤维增强金属基复合材料提供了一种新的范例,这种复合材料可以实现机械、热学和电学性能的良好平衡。Interfacial optimization strategy of local point relax facilitates synergistic enhancement of strength and toughness in 2.5D SiCf/SiC compositesZhaoliang Guo, Hongyun Luo, Qian Chen, Jie Cui, Jiaping Zhang, Jing Chen, Fule Qin, Chaoli Madoi:10.1016/j.compositesa.2025.109430 局部点松弛的界面优化策略有利于2.5D SiCf/SiC复合材料强度和韧性的协同增强Continuous SiC fiber reinforced silicon carbide matrix (SiCf/SiC) composites have received considerable attention because of their high strength, low density and excellent high-temperature resistance. However, the mechanical performance potential of 2.5-dimensional (2.5D) SiCf/SiC composites remains limited by interfacial property challenges. This study propose an interfacial optimization strategy that tunes local bonding and residual thermal stress (RTS). The spatial distribution of RTS and interfacial bonding behavior was examined using finite element model (FEM) simulations, scanning electron microscope (SEM), fiber push-in tests and Raman spectroscopy. The optimized interphase improved fracture toughness by 277% and flexural strength by 34%, demonstrating the effectiveness of the approach in achieving concurrent improvements in toughness and strength. The mechanis ms responsible for these enhancements were clarified through signal ana lysis of acoustic emission (AE) monitoring and fracture morphology examination. Local point relaxation of the interface and RTS adjustment maintained efficient load transfer and promoted the development of complex three-dimensional stepped crack paths within the SiC matrix, accompanied by crack deflection at the pyrocarbon (PyC) interface. This design facilitates fibers to bear load from the early stages of deformation and resulted in a substantial increase in strength. This approach provides a simple and energy-efficient route to improve the mechanical performance of ceramic matrix composites.连续碳化硅纤维增强碳化硅基复合材料(SiCf/SiC)因其高强、低密度和优异的耐高温性能而受到广泛关注。然而,2.5维(2.5D) SiCf/SiC复合材料的力学性能潜力仍然受到界面性能挑战的限制。本研究提出了一种调整局部键合和残余热应力(RTS)的界面优化策略。采用有限元模型(FEM)模拟、扫描电子显微镜(SEM)、光纤推入试验和拉曼光谱分析了RTS的空间分布和界面键合行为。优化后的界面相将断裂韧性提高了277%,弯曲强度提高了34%,证明了该方法在同时提高韧性和强度方面的有效性。通过声发射(AE)监测信号分析和裂缝形貌检查,阐明了这些增强的机制。界面的局部点松弛和RTS调整维持了有效的载荷传递,促进了SiC基体内部复杂三维阶梯裂纹路径的发展,并伴随着焦碳(PyC)界面处的裂纹偏转。这种设计有利于纤维从变形的早期阶段就承受载荷,从而大大提高了强度。该方法为提高陶瓷基复合材料的力学性能提供了一条简单、节能的途径。Composites Part B: EngineeringBionic CFRP for extreme applications: from natural structures to high-performance manufacturingYu Han, Qihao Xu, Yi-Qi Wang, Hang Gaodoi:10.1016/j.composites b.2025.113193用于极端应用的仿生CFRP:从自然结构到高性能制造Biomaterials have evolved over billions of years to develop multiscale structures that are lightweight, high-strength, and multifunctional, providing important insights for the design of artificial composite materials. Bionic design has emerged as an effective way to enhance the performance of carbon fiber reinforced polymer (CFRP). To fully understand the concepts and advantages of the bionic strategy, this review provides an overview of the research advances in bionic CFRP, focusing on the remarkable progress in interlaminar fracture toughness, impact resistance, static load-bearing properties, damping performance, and functional surfaces. The structural features and reinforcement mechanis ms of biological prototypes, such as feathers’ interlocking mechanis m, crustacean exoskeletons’ Bouligand structure, and shells’ “brick-and-mortar” microstructure, have been comprehensively an alyzed to support the development of high-performance bionic CFRP. The extreme complexity of bionic structures, characterized by diverse geometries and multi-scale hierarchical features, poses significant challenges to manufacture. This review systematically summarizes the manufacturing technologies of bionic CFRP, including hot-pressing molding, continuous fiber 3D printing, and laser processing. This review points out the current key issues that need to be addressed urgently and outlines future research directions to facilitate the application of high-performance bionic CFRPs in extreme environments.生物材料经过数十亿年的发展,已经发展出轻量化、高强度和多功能的多尺度结构,为人工复合材料的设计提供了重要的见解。仿生设计已成为提高碳纤维增强聚合物(CFRP)性能的有效途径。为了充分理解仿生策略的概念和优势,本文综述了仿生CFRP的研究进展,重点介绍了仿生CFRP在层间断裂韧性、抗冲击性、静力承载性能、阻尼性能和功能表面等方面的显著进展。综合分析了生物原型的结构特征和增强机制,如羽毛的互锁机制、甲壳类外骨骼的Bouligand结构和贝壳的“砖瓦”微观结构,为高性能仿生CFRP的开发提供了支持。仿生结构的极端复杂性,以不同的几何形状和多尺度层次特征为特征,给制造带来了巨大的挑战。本文系统地综述了仿生CFRP的制造技术,包括热压成型、连续纤维3D打印和激光加工。本文指出了目前迫切需要解决的关键问题,并概述了未来的研究方向,以促进高性能仿生cfrp在极端环境中的应用。Development of a novel borax@hydrogel composite for neutron radiation shielding in cementitious compositeJin Yang, Zhiliang Dong, Ying Su, Bohumír Strnadel, Xunqi Zhao, Yubo Li, Xingyang Hedoi:10.1016/j.composites b.2025.113196 胶结复合材料中屏蔽中子辐射的新型borax@hydrogel复合材料的研制Cementitious materials are promising for neutron shielding but are limited by insufficient light elements and a singular shielding mechanis m. Inspired by the hierarchical energy dissipation of natural honeycombs, this study designed and synthesized a novel borax@hydrogel (BSAP) composite to construct a bioinspired hierarchical &#39;interfacial transition zone (ITZ)–voids–dehydrated hydrogel&#39; shielding network. The BSAP composite is formed through physical cross-linking between borax and the hydrogel matrix. Notably, the BSAP exhibits a multi-state boron distribution, characterized by three distinct forms: free dispersion, physical binding within the hydrogel network, and surface crystalline attachment. Furthermore, borax incorporation does not notably impair BSAP’s water absorption and structural stability. Compared to the blank group, BSAP incorporation enhances cementitious materials’ neutron removal cross-section and shielding efficiency by 324.5% and 317%, respectively, while reducing the half-value layer by 76.4%. The superior performance stems from its honeycomb-mimetic multiscale shielding mechanis ms, including the elastic attenuation and thermal neutron capture effect of the hydrogen-rich and boron-rich ITZ, the path extension effect of hydrogel voids, and the residual strengthening effect of dehydrated hydrogel.胶结材料是一种很有前途的中子屏蔽材料,但受限于光元素不足和屏蔽机制单一。受天然蜂窝分层能量耗散的启发,本研究设计并合成了一种新型borax@hydrogel (BSAP)复合材料,构建了仿生分层“界面过渡区(ITZ) -空隙-脱水水凝胶”屏蔽网络。BSAP复合材料是通过硼砂和水凝胶基质之间的物理交联形成的。值得注意的是,BSAP表现出多态硼分布,其特点是三种不同的形式:自由分散、水凝胶网络内的物理结合和表面晶体附着。硼砂掺入对BSAP的吸水率和结构稳定性影响不显著。与空白组相比,BSAP的加入使胶凝材料的中子去除截面和屏蔽效率分别提高了324.5%和317%,使半值层减少了76.4%。这种优异的性能源于其蜂窝状的多尺度屏蔽机制,包括富氢和富硼ITZ的弹性衰减和热中子捕获效应、水凝胶空隙的路径延伸效应以及脱水水凝胶的残余强化效应。Lightweight High-entropy Alloy/N-Doped Carbon Aerogel Composites for High-efficiency Electromagnetic Wave AbsorptionLin Zhu, Xiaoming Duan, Zengyan Wei, Yurui Man, Xiaoxiao Huang, Xingqi Liao, Bo Zhong, Lan Wang, Shaojie Liu, Xiangyu Meng, Liang Ma, Peigang He, Wen Wang, Dechang Jia, Yu Zhoudoi:10.1016/j.composites b.2025.113199 高效电磁波吸收的轻质高熵合金/掺n碳气凝胶复合材料High-entropy alloys are emerging as a compelling class of materials for electromagnetic wave absorption, due to their tunable electronic structures and the synergistic interactions among their diverse components. However, their practical application is often limited by inherent drawbacks such as high density and large dielectric constants, resulting in significant impedance mis match. This study presents a hierarchically structured composite fabricated by directional freeze-drying followed by high-temperature pyrolysis, to enable the in situ formation of HEAs on two-dimensional carbon substrates. The aerogel composites produced boast a notably low density of roughly 41.53 mg/cm3. The optimized FeCoNiCuMn/C aerogel composites display a minimum reflection loss (RLmin) of –65.85 dB and an ultra-wide effective absorption bandwidth (EAB) of 7.36 GHz at a thickness of 2.3 mm with a filler loading of 10 wt%. This represents performance that surpasses most conventional HEA-based absorbers reported to date. Through multiscale characterization and electromagnetic simulation, the dissipation mechanis ms were systematically clarified, which include interfacial polarization, multi-scale conductive networks, and optimized impedance matching. This work provides a viable strategy for designing high-performance HEAs/N-doped carbon electromagnetic absorbers through rational structural engineering.高熵合金由于其可调谐的电子结构和不同成分之间的协同相互作用,正成为一种引人注目的电磁波吸收材料。然而,它们的实际应用往往受到诸如高密度和大介电常数等固有缺陷的限制,导致严重的阻抗失配。本研究提出了一种分层结构的复合材料,通过定向冷冻干燥和高温热解制备,使HEAs在二维碳衬底上原位形成。所生产的气凝胶复合材料具有明显的低密度,约为41.53 mg/cm3。优化后的FeCoNiCuMn/C气凝胶复合材料在厚度为2.3 mm、填充量为10 wt%时的最小反射损耗(RLmin)为-65.85 dB,超宽有效吸收带宽(EAB)为7.36 GHz。这代表了迄今为止报道的大多数传统hea基吸收剂的性能。通过多尺度表征和电磁仿真,系统地阐明了耗散机制,包括界面极化、多尺度导电网络和优化阻抗匹配。本研究为通过合理的结构工程设计高性能HEAs/ n掺杂碳电磁吸收剂提供了可行的策略。Composites Science and TechnologyHigh-Performance Epoxy Composites Based on 3D Interconnected Hybrid Filler Network Interface Engineering: Synergistic Enhancement of Thermal and Mechanical PropertiesShuaishuai Zhou, Peiwen Sun, Mingxin Zhong, Shaohua Li, Peng Zhang, Meihong Liao, Peng Ding, Jingjie Daidoi:10.1016/j.compscitech.2025.111436 基于三维互联杂化填料网络界面工程的高性能环氧复合材料:热力学性能的协同增强The exponential advancement of artificial intelligence technologies has driven a corresponding surge in chip power density. Effective heat dissipation is the key factor restricting their safety and reliability thereby intensifying the demand for advanced thermal management materials. Nevertheless, persistent trade-offs in thermomechanical properties constitute a fundamental bottleneck in the development of high-performance thermal management materials. In this work, epoxy resin composites with three-dimensional (3D) interconnected hybrid filler networks were fabricated by a multiscale cooperative strategy of “freeze-drying, high-temperature carbonization, and in-situ impregnation”. Based on the interface engineering strategy, the morphology synergy between graphene nanosheets and hydroxylated boron nitride nanosheets was utilized to construct an interconnected 3D network. Combined with high-temperature carbonization to eliminate network defects, the synergistic optimization of thermal conductivity and mechanical properties of epoxy composites was successfully achieved. The prepared epoxy composite exhibits an exceptional through-plane thermal conductivity of 3.10 W·m-1·K-1 at a low hybrid filler content of 4.65 wt%, achieving a remarkable 1326% improvement over pristine epoxy. Notably, it retains excellent compressive strength (204 MPa), indicating balanced thermomechanical properties. This work successfully overcomes the long-standing thermomechanical trade-off limitation in composite materials, offering novel design guidelines for next-generation high-efficiency thermal management composites.人工智能技术的指数级发展带动了芯片功率密度的相应激增。有效的散热是制约其安全性和可靠性的关键因素,从而加大了对先进热管理材料的需求。然而,热机械性能的持续权衡构成了高性能热管理材料发展的基本瓶颈。采用“冷冻干燥-高温碳化-原位浸渍”的多尺度协同策略,制备了具有三维互联杂化填料网络的环氧树脂复合材料。基于界面工程策略,利用石墨烯纳米片和羟基化氮化硼纳米片之间的形态协同作用,构建了一个相互连接的三维网络。结合高温碳化消除网状缺陷,成功实现了环氧复合材料导热性能和力学性能的协同优化。在杂化填料含量为4.65 wt%的情况下,制备的环氧复合材料的通平面导热系数为3.10 W·m-1·K-1,比原始环氧树脂的导热系数提高了1326%。值得注意的是,它保持了优异的抗压强度(204 MPa),表明平衡的热机械性能。这项工作成功地克服了复合材料长期存在的热力学权衡限制,为下一代高效热管理复合材料提供了新的设计指南。 来源:复合材料力学仿真Composites FEM

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习计划 福利任务
下载APP
联系我们
帮助与反馈