今日更新:Composite Structures 3 篇,Composites Part A: Applied Science and Manufacturing 4 篇,Composites Part B: Engineering 3 篇,Composites Science and Technology 1 篇Composite StructuresFinite element modeling and an alysis of woven roving mat reinforced shape memory polymer composite bar under torsionMd Saad Hussain Barsania, K.V. Nagendra Gopaldoi:10.1016/j.compstruct.2025.119849扭转作用下形状记忆聚合物复合棒材编织粗纱垫的有限元建模与分析The finite element an alysis of a thermally stimulated woven roving mat (WRM) reinforced shape memory polymer composite (S MPC) bar under torsion is presented in this paper. A rectangular bar made of an in-house realized S MPC consisting of layers of shape memory polymer (S MP) and WRM fibers is subjected to a thermomechanical cycle that includes heating the specimen to a high temperature (Th) above the glass transition temperature (Tg), applying an angular twist, and then cooling the deformed configuration to a low temperature (Tl), followed by unloading to achieve a temporary shape, and finally reheating to regain the original shape. A thermodynamically consistent 3D constitutive model for thermoset S MPs is implemented numerically to model the stress–strain behavior of the S MP. Following initial validation studies, numerical simulations were performed to obtain and quantify the relative shape memory behavior of an in-house synthesized S MP and WRM-reinforced S MPC in terms of shape fixity and recovery parameters for different angular twists. The results obtained show that the addition of a s mall volume fraction of WRM fibers significantly improves the mechanical performance and accelerates the shape recovery while reducing the shape memory behavior. This is significant in the use of reinforced S MPC for structural applications.本文介绍了在扭转作用下对热刺 激编织粗纱毡(WRM)增强形状记忆聚合物复合材料(S MPC)棒进行有限元分析。采用由内部研发的形状记忆聚合物(S MP)层和 WRM 纤维层组成的矩形 S MPC 棒,对其施加热机械循环,包括将试样加热至高于玻璃化转变温度(Tg)的高温(Th),施加角扭转,然后将变形构型冷却至低温(Tl),卸载以获得临时形状,最后重新加热以恢复原始形状。采用热力学一致的三维本构模型对热固性 S MP 进行数值模拟,以模拟 S MP 的应力 - 应变行为。在初步验证研究之后,进行了数值模拟,以获取并量化内部合成的 S MP 和 WRM 增强 S MPC 在不同角扭转下的相对形状记忆行为,包括形状固定性和恢复参数。实验结果表明,添加少量体积分数的 WRM 纤维显著提高了机械性能,加快了形状恢复速度,但降低了形状记忆行为。这对于增强型形状记忆聚合物复合材料在结构应用中的使用具有重要意义。Data-based damage evolution an alysis of chopped carbon fiber sheet molding compound compositeKaifeng Wang, Zhengyu Ma, Li Yang, Hongye Zhang, Zhilin Sun, Jingjing Lidoi:10.1016/j.compstruct.2025.119857基于数据的短切碳纤维板材成型复合材料损伤演化分析The study investigates the damage evolution mechanis ms in chopped carbon fiber sheet molding compound (CF-S MC) composites subjected to uniaxial tensile loading through a data-driven approach integrating micro-X-ray computed tomography (μXCT) and multivariate correlation an alysis. Initially, μXCT imaging provided comprehensive in-situ characterization of internal microstructural damage processes, identifying fiber orientation, fiber volume fraction, and loading conditions as critical variables influencing crack propagation. Subsequently, a quantitative damage evolution prediction model was developed. A data-based approach was employed to translate complex multi-variable nonlinear relationships into a single-variable ana lysis. The model introduces a Damage Evolution Index (DEI), effectively capturing the influence of identified critical factors on crack growth rate. Validation using independent tensile testing datasets confirmed the accuracy and generality of the proposed prediction framework, demonstrating its potential applicability in advanced structural health monitoring and damage prognosis for composites采用微x射线计算机断层扫描(μXCT)和多变量相关分析相结合的数据驱动方法,研究了短切碳纤维薄板模压复合材料(CF-S MC)在单轴拉伸载荷作用下的损伤演化机制。最初,μXCT成像提供了内部微结构损伤过程的综合原位表征,确定了纤维取向、纤维体积分数和加载条件是影响裂纹扩展的关键变量。在此基础上,建立了损伤演化定量预测模型。采用基于数据的方法将复杂的多变量非线性关系转化为单变量分析。该模型引入了损伤演化指数(DEI),有效地捕捉了识别出的关键因素对裂纹扩展速率的影响。使用独立的拉伸测试数据集进行验证,证实了所提出的预测框架的准确性和通用性,证明了其在复合材料高级结构健康监测和损伤预测中的潜在适用性Improving energy absorption in structures using tubular TPMS structure optimization and printing strategiesHengyu Zhang, Jun Zhao, Chao Xu, Ruqing Huo, Qingsong Niudoi:10.1016/j.compstruct.2025.119820利用管状TPMS结构优化和打印策略提高结构吸能This study proposes novel heteromorphic triply periodic minimal surface (TPMS) structures fabricated via selective laser melting (SLM). Double-layer circular tubes and tubular TPMS fillers, as well as filled structures and integrated printing structures, were respectively prepared. Quasi-static compression experiments validated finite element an alysis (FEA) accuracy, demonstrating excellent consistency. The validated FEA model assessed crashworthiness of tubular TPMS, filled structures, and integrated printed designs across varying relative densities. Results indicate integrated printed structures achieve the highest specific energy absorption (SEA), surpassing filled structures and outperforming standalone tubular TPMS. Heteromorphic TPMS uniquely combines low initial peak force (Fi) with elevated stress plateaus at equivalent relative densities, enhancing both energy absorption and safety. Multi-morphology TPMS enables gradient energy absorption, reducing Fi at identical compression distances. Monolithic integration improves structural stiffness and minimizes force fluctuations during compression, significantly enhancing crash resistance and safety. Remarkably, integrated printing improves SEA by up to 85.1% and crush force efficiency (CFE) by 46.6% versus benchmark structures.本研究提出了一种新的异型三周期最小表面(TPMS)结构,该结构是通过选择性激光熔化(SLM)制备的。分别制备了双层圆管和管状TPMS填料,以及填充结构和集成印刷结构。准静态压缩实验验证了有限元分析(FEA)的准确性,证明了良好的一致性。经过验证的有限元模型评估了不同相对密度下管状TPMS、填充结构和集成打印设计的耐撞性。结果表明,集成印刷结构具有最高的比能吸收(SEA),超过填充结构,优于单独的管状TPMS。异型TPMS独特地结合了低初始峰值力(Fi)和等效相对密度下的高应力平台,增强了能量吸收和安全性。多形态TPMS可以实现梯度能量吸收,在相同的压缩距离下降低Fi。整体集成提高了结构刚度,最大限度地减少了压缩过程中的力波动,显著提高了抗碰撞性和安全性。值得注意的是,与基准结构相比,集成印刷将SEA提高了85.1%,粉碎力效率(CFE)提高了46.6%。Composites Part A: Applied Science and ManufacturingA degradation-informed phase-field model for matrix-dominated high-cycle fatigue in 3D composite laminatesHarshdeep Sharma, Akhilendra Singhdoi:10.1016/j.compositesa.2025.109377 三维复合材料层合板基体主导高周疲劳的退化通知相场模型This work presents a phase-field framework for modeling matrix-dominated high-cycle fatigue (HCF) in three-dimensional fiber-reinforced composite laminates. The model captures intralaminar damage mechanis ms such as matrix splitting and shear-driven cracking under high-cycle loading, with crack propagation primarily aligning along fiber directions and no significant fiber rupture observed. A tailored anisotropic fatigue degradation formulation is proposed, coupled with an adaptive cycle-jump strategy termed Degradation-Informed Constant Load Accumulation (D-CLA), which significantly improves computational efficiency. The fatigue history variable is defined using degraded strain energy density to enhance physical consistency. Numerical studies on both two- and three-dimensional laminate configurations demonstrate the framework’s predictive capability in capturing fatigue crack growth and S–N behavior, showing strong agreement with literature and experimental trends.本文提出了一种用于模拟三维纤维增强复合材料层合板中以基体为主的高周疲劳(HCF)的相场框架。该模型能够捕捉到在高周载荷作用下层内损伤机制,如基体开裂和剪切驱动裂纹扩展,裂纹扩展主要沿纤维方向,且未观察到明显的纤维断裂。提出了一个定制的各向异性疲劳退化公式,并结合了一种称为退化信息恒定载荷累积(D-CLA)的自适应循环跳跃策略,显著提高了计算效率。疲劳历史变量通过退化应变能密度来定义,以增强物理一致性。对二维和三维层合板结构的数值研究证明了该框架在捕捉疲劳裂纹扩展和 S-N 行为方面的预测能力,与文献和实验趋势高度一致。Energetic deposition of Polymer-Based High-Entropy composite film for aerospace applicationsYifan Zhang, Shunian Chen, Qian Li, Shengqi Dai, Qingyan Hou, Pan Pang, Lin Chen, Bin Liaodoi:10.1016/j.compositesa.2025.109425 航空航天用聚合物基高熵复合薄膜的高能沉积To address the degradation challenges faced by spacecraft-exposed polymers from atomic oxygen (AO) erosion, radiation damage, and electrostatic hazards (ESC/ESD), we fabricated innovative (TiAlCrSiV)Nx/TiAlCrSiV-CPI(PEI) composite films with multifunctional durability. Through advanced spectroscopy and microstructural characterization, the engineered interface demonstrates synergistic chelation-crosslinking interactions that optimize interfacial cohesion and fracture toughness. The exceptional AO resistance stems from the cubic high entropy nitride layer acting as an effective diffusion barrier, achieving ultralow erosion yield values (4.91 ± 0.12 and 4.38 ± 0.16 × 10-26 cm3 atom−1). Radiation tolerance was verified through N+ irradiation tests, revealing slight dislocation and lattice swelling (0.6 %) in the stabilized nanocrystalline. In addition, the customized composition and architecture exhibit sufficient electrostatic dissipation capability to resolve potential ESC/ESD issues. This fabrication strategy integrating energetic ion beam with high entropy interfacial regulation presents a viable solution for developing next-generation spacecraft materials capable of withstanding space synergistic effects.为了解决航天器暴露的聚合物面临的原子氧(AO)侵蚀,辐射损伤和静电危害(ESC/ESD)的降解挑战,我们制造了具有多功能耐久性的创新(TiAlCrSiV)Nx/TiAlCrSiV- cpi (PEI)复合薄膜。通过先进的光谱和微观结构表征,工程界面显示出协同螯合交联相互作用,优化了界面凝聚力和断裂韧性。优异的AO阻力源于立方高熵氮化层作为有效的扩散屏障,实现了超低的侵蚀屈服值(4.91 ± 0.12和4.38 ± 0.16 × 10-26 cm3原子−1)。通过N+辐照试验验证了纳米晶的耐辐照性,发现稳定的纳米晶中有轻微的位错和晶格膨胀(0.6 %)。此外,定制的结构和结构具有足够的静电耗散能力,可以解决潜在的ESC/ESD问题。这种将高能离子束与高熵界面调控相结合的制造策略为开发能够承受空间协同效应的下一代航天器材料提供了一种可行的解决方案。Synergistic regulation of mechanical and physical properties in SiC nanowire dispersion-strengthened copper via core–shell coatingLu Han, Zetao Mou, Yuan Huang, Yongchang Liu, Zumin Wangdoi:10.1016/j.compositesa.2025.109429碳化硅纳米线分散增强铜的核壳涂层对力学和物理性能的协同调节A copper (Cu) matrix composite reinforced with discontinuous SiC nanowires (SICNWs) was developed through sintering of core–shell Cu-coated SICNW powders followed by high-pressure torsion processing. Through this process, a uniform dispersion of 1.0 vol% SICNWs within the Cu matrix was successfully achieved, and these individual nanowires are distributed across the grain boundaries (GBs) and embedded within the grain interiors, which significantly improved the interfacial bonding strength of the composite. The as-prepared composite exhibited exceptional comprehensive properties: yield strength ∼ 484 MPa, ultimate tensile strength ∼ 499 MPa, electrical conductivity ∼ 82 % IACS (International Annealed Cu Standard), and thermal conductivity ∼ 270 W/(m·K). Microstructural ana lysis revealed that the dispersed SICNWs effectively pinned GBs, and thus can inhibit the migration of GBs under heat treatment, significantly improving the thermal stability. This work provides a novel paradigm for designing fiber-reinforced metal matrix composites that achieve a well-balanced combination of mechanical, thermal, and electrical properties.采用核壳包覆碳化硅纳米线烧结并进行高压扭转处理的方法,制备了不连续碳化硅纳米线增强铜基复合材料。通过该工艺,成功地实现了1.0 vol%的SICNWs在Cu基体内的均匀分散,并且这些单独的纳米线分布在晶界(GBs)上并嵌入晶粒内部,显著提高了复合材料的界面结合强度。和综合表现出特殊的综合属性:屈服强度 ∼ 484 MPa,极限抗拉强度 ∼ 499 MPa,导电性 ∼ 82 % IACS(国际退火铜标准),和热导率 ∼ 270 W / (m·K)。显微组织分析表明,分散的SICNWs有效地固定了GBs,从而抑制了GBs在热处理过程中的迁移,显著提高了热稳定性。这项工作为设计纤维增强金属基复合材料提供了一种新的范例,这种复合材料可以实现机械、热学和电学性能的良好平衡。Interfacial optimization strategy of local point relax facilitates synergistic enhancement of strength and toughness in 2.5D SiCf/SiC compositesZhaoliang Guo, Hongyun Luo, Qian Chen, Jie Cui, Jiaping Zhang, Jing Chen, Fule Qin, Chaoli Madoi:10.1016/j.compositesa.2025.109430 局部点松弛的界面优化策略有利于2.5D SiCf/SiC复合材料强度和韧性的协同增强Continuous SiC fiber reinforced silicon carbide matrix (SiCf/SiC) composites have received considerable attention because of their high strength, low density and excellent high-temperature resistance. However, the mechanical performance potential of 2.5-dimensional (2.5D) SiCf/SiC composites remains limited by interfacial property challenges. This study propose an interfacial optimization strategy that tunes local bonding and residual thermal stress (RTS). The spatial distribution of RTS and interfacial bonding behavior was examined using finite element model (FEM) simulations, scanning electron microscope (SEM), fiber push-in tests and Raman spectroscopy. The optimized interphase improved fracture toughness by 277% and flexural strength by 34%, demonstrating the effectiveness of the approach in achieving concurrent improvements in toughness and strength. The mechanis ms responsible for these enhancements were clarified through signal ana lysis of acoustic emission (AE) monitoring and fracture morphology examination. Local point relaxation of the interface and RTS adjustment maintained efficient load transfer and promoted the development of complex three-dimensional stepped crack paths within the SiC matrix, accompanied by crack deflection at the pyrocarbon (PyC) interface. This design facilitates fibers to bear load from the early stages of deformation and resulted in a substantial increase in strength. This approach provides a simple and energy-efficient route to improve the mechanical performance of ceramic matrix composites.连续碳化硅纤维增强碳化硅基复合材料(SiCf/SiC)因其高强、低密度和优异的耐高温性能而受到广泛关注。然而,2.5维(2.5D) SiCf/SiC复合材料的力学性能潜力仍然受到界面性能挑战的限制。本研究提出了一种调整局部键合和残余热应力(RTS)的界面优化策略。采用有限元模型(FEM)模拟、扫描电子显微镜(SEM)、光纤推入试验和拉曼光谱分析了RTS的空间分布和界面键合行为。优化后的界面相将断裂韧性提高了277%,弯曲强度提高了34%,证明了该方法在同时提高韧性和强度方面的有效性。通过声发射(AE)监测信号分析和裂缝形貌检查,阐明了这些增强的机制。界面的局部点松弛和RTS调整维持了有效的载荷传递,促进了SiC基体内部复杂三维阶梯裂纹路径的发展,并伴随着焦碳(PyC)界面处的裂纹偏转。这种设计有利于纤维从变形的早期阶段就承受载荷,从而大大提高了强度。该方法为提高陶瓷基复合材料的力学性能提供了一条简单、节能的途径。Composites Part B: EngineeringBionic CFRP for extreme applications: from natural structures to high-performance manufacturingYu Han, Qihao Xu, Yi-Qi Wang, Hang Gaodoi:10.1016/j.composites b.2025.113193用于极端应用的仿生CFRP:从自然结构到高性能制造Biomaterials have evolved over billions of years to develop multiscale structures that are lightweight, high-strength, and multifunctional, providing important insights for the design of artificial composite materials. Bionic design has emerged as an effective way to enhance the performance of carbon fiber reinforced polymer (CFRP). To fully understand the concepts and advantages of the bionic strategy, this review provides an overview of the research advances in bionic CFRP, focusing on the remarkable progress in interlaminar fracture toughness, impact resistance, static load-bearing properties, damping performance, and functional surfaces. The structural features and reinforcement mechanis ms of biological prototypes, such as feathers’ interlocking mechanis m, crustacean exoskeletons’ Bouligand structure, and shells’ “brick-and-mortar” microstructure, have been comprehensively an alyzed to support the development of high-performance bionic CFRP. The extreme complexity of bionic structures, characterized by diverse geometries and multi-scale hierarchical features, poses significant challenges to manufacture. This review systematically summarizes the manufacturing technologies of bionic CFRP, including hot-pressing molding, continuous fiber 3D printing, and laser processing. This review points out the current key issues that need to be addressed urgently and outlines future research directions to facilitate the application of high-performance bionic CFRPs in extreme environments.生物材料经过数十亿年的发展,已经发展出轻量化、高强度和多功能的多尺度结构,为人工复合材料的设计提供了重要的见解。仿生设计已成为提高碳纤维增强聚合物(CFRP)性能的有效途径。为了充分理解仿生策略的概念和优势,本文综述了仿生CFRP的研究进展,重点介绍了仿生CFRP在层间断裂韧性、抗冲击性、静力承载性能、阻尼性能和功能表面等方面的显著进展。综合分析了生物原型的结构特征和增强机制,如羽毛的互锁机制、甲壳类外骨骼的Bouligand结构和贝壳的“砖瓦”微观结构,为高性能仿生CFRP的开发提供了支持。仿生结构的极端复杂性,以不同的几何形状和多尺度层次特征为特征,给制造带来了巨大的挑战。本文系统地综述了仿生CFRP的制造技术,包括热压成型、连续纤维3D打印和激光加工。本文指出了目前迫切需要解决的关键问题,并概述了未来的研究方向,以促进高性能仿生cfrp在极端环境中的应用。Development of a novel borax@hydrogel composite for neutron radiation shielding in cementitious compositeJin Yang, Zhiliang Dong, Ying Su, Bohumír Strnadel, Xunqi Zhao, Yubo Li, Xingyang Hedoi:10.1016/j.composites b.2025.113196 胶结复合材料中屏蔽中子辐射的新型borax@hydrogel复合材料的研制Cementitious materials are promising for neutron shielding but are limited by insufficient light elements and a singular shielding mechanis m. Inspired by the hierarchical energy dissipation of natural honeycombs, this study designed and synthesized a novel borax@hydrogel (BSAP) composite to construct a bioinspired hierarchical 'interfacial transition zone (ITZ)–voids–dehydrated hydrogel' shielding network. The BSAP composite is formed through physical cross-linking between borax and the hydrogel matrix. Notably, the BSAP exhibits a multi-state boron distribution, characterized by three distinct forms: free dispersion, physical binding within the hydrogel network, and surface crystalline attachment. Furthermore, borax incorporation does not notably impair BSAP’s water absorption and structural stability. Compared to the blank group, BSAP incorporation enhances cementitious materials’ neutron removal cross-section and shielding efficiency by 324.5% and 317%, respectively, while reducing the half-value layer by 76.4%. The superior performance stems from its honeycomb-mimetic multiscale shielding mechanis ms, including the elastic attenuation and thermal neutron capture effect of the hydrogen-rich and boron-rich ITZ, the path extension effect of hydrogel voids, and the residual strengthening effect of dehydrated hydrogel.胶结材料是一种很有前途的中子屏蔽材料,但受限于光元素不足和屏蔽机制单一。受天然蜂窝分层能量耗散的启发,本研究设计并合成了一种新型borax@hydrogel (BSAP)复合材料,构建了仿生分层“界面过渡区(ITZ) -空隙-脱水水凝胶”屏蔽网络。BSAP复合材料是通过硼砂和水凝胶基质之间的物理交联形成的。值得注意的是,BSAP表现出多态硼分布,其特点是三种不同的形式:自由分散、水凝胶网络内的物理结合和表面晶体附着。硼砂掺入对BSAP的吸水率和结构稳定性影响不显著。与空白组相比,BSAP的加入使胶凝材料的中子去除截面和屏蔽效率分别提高了324.5%和317%,使半值层减少了76.4%。这种优异的性能源于其蜂窝状的多尺度屏蔽机制,包括富氢和富硼ITZ的弹性衰减和热中子捕获效应、水凝胶空隙的路径延伸效应以及脱水水凝胶的残余强化效应。Lightweight High-entropy Alloy/N-Doped Carbon Aerogel Composites for High-efficiency Electromagnetic Wave AbsorptionLin Zhu, Xiaoming Duan, Zengyan Wei, Yurui Man, Xiaoxiao Huang, Xingqi Liao, Bo Zhong, Lan Wang, Shaojie Liu, Xiangyu Meng, Liang Ma, Peigang He, Wen Wang, Dechang Jia, Yu Zhoudoi:10.1016/j.composites b.2025.113199 高效电磁波吸收的轻质高熵合金/掺n碳气凝胶复合材料High-entropy alloys are emerging as a compelling class of materials for electromagnetic wave absorption, due to their tunable electronic structures and the synergistic interactions among their diverse components. However, their practical application is often limited by inherent drawbacks such as high density and large dielectric constants, resulting in significant impedance mis match. This study presents a hierarchically structured composite fabricated by directional freeze-drying followed by high-temperature pyrolysis, to enable the in situ formation of HEAs on two-dimensional carbon substrates. The aerogel composites produced boast a notably low density of roughly 41.53 mg/cm3. The optimized FeCoNiCuMn/C aerogel composites display a minimum reflection loss (RLmin) of –65.85 dB and an ultra-wide effective absorption bandwidth (EAB) of 7.36 GHz at a thickness of 2.3 mm with a filler loading of 10 wt%. This represents performance that surpasses most conventional HEA-based absorbers reported to date. Through multiscale characterization and electromagnetic simulation, the dissipation mechanis ms were systematically clarified, which include interfacial polarization, multi-scale conductive networks, and optimized impedance matching. This work provides a viable strategy for designing high-performance HEAs/N-doped carbon electromagnetic absorbers through rational structural engineering.高熵合金由于其可调谐的电子结构和不同成分之间的协同相互作用,正成为一种引人注目的电磁波吸收材料。然而,它们的实际应用往往受到诸如高密度和大介电常数等固有缺陷的限制,导致严重的阻抗失配。本研究提出了一种分层结构的复合材料,通过定向冷冻干燥和高温热解制备,使HEAs在二维碳衬底上原位形成。所生产的气凝胶复合材料具有明显的低密度,约为41.53 mg/cm3。优化后的FeCoNiCuMn/C气凝胶复合材料在厚度为2.3 mm、填充量为10 wt%时的最小反射损耗(RLmin)为-65.85 dB,超宽有效吸收带宽(EAB)为7.36 GHz。这代表了迄今为止报道的大多数传统hea基吸收剂的性能。通过多尺度表征和电磁仿真,系统地阐明了耗散机制,包括界面极化、多尺度导电网络和优化阻抗匹配。本研究为通过合理的结构工程设计高性能HEAs/ n掺杂碳电磁吸收剂提供了可行的策略。Composites Science and TechnologyHigh-Performance Epoxy Composites Based on 3D Interconnected Hybrid Filler Network Interface Engineering: Synergistic Enhancement of Thermal and Mechanical PropertiesShuaishuai Zhou, Peiwen Sun, Mingxin Zhong, Shaohua Li, Peng Zhang, Meihong Liao, Peng Ding, Jingjie Daidoi:10.1016/j.compscitech.2025.111436 基于三维互联杂化填料网络界面工程的高性能环氧复合材料:热力学性能的协同增强The exponential advancement of artificial intelligence technologies has driven a corresponding surge in chip power density. Effective heat dissipation is the key factor restricting their safety and reliability thereby intensifying the demand for advanced thermal management materials. Nevertheless, persistent trade-offs in thermomechanical properties constitute a fundamental bottleneck in the development of high-performance thermal management materials. In this work, epoxy resin composites with three-dimensional (3D) interconnected hybrid filler networks were fabricated by a multiscale cooperative strategy of “freeze-drying, high-temperature carbonization, and in-situ impregnation”. Based on the interface engineering strategy, the morphology synergy between graphene nanosheets and hydroxylated boron nitride nanosheets was utilized to construct an interconnected 3D network. Combined with high-temperature carbonization to eliminate network defects, the synergistic optimization of thermal conductivity and mechanical properties of epoxy composites was successfully achieved. The prepared epoxy composite exhibits an exceptional through-plane thermal conductivity of 3.10 W·m-1·K-1 at a low hybrid filler content of 4.65 wt%, achieving a remarkable 1326% improvement over pristine epoxy. Notably, it retains excellent compressive strength (204 MPa), indicating balanced thermomechanical properties. This work successfully overcomes the long-standing thermomechanical trade-off limitation in composite materials, offering novel design guidelines for next-generation high-efficiency thermal management composites.人工智能技术的指数级发展带动了芯片功率密度的相应激增。有效的散热是制约其安全性和可靠性的关键因素,从而加大了对先进热管理材料的需求。然而,热机械性能的持续权衡构成了高性能热管理材料发展的基本瓶颈。采用“冷冻干燥-高温碳化-原位浸渍”的多尺度协同策略,制备了具有三维互联杂化填料网络的环氧树脂复合材料。基于界面工程策略,利用石墨烯纳米片和羟基化氮化硼纳米片之间的形态协同作用,构建了一个相互连接的三维网络。结合高温碳化消除网状缺陷,成功实现了环氧复合材料导热性能和力学性能的协同优化。在杂化填料含量为4.65 wt%的情况下,制备的环氧复合材料的通平面导热系数为3.10 W·m-1·K-1,比原始环氧树脂的导热系数提高了1326%。值得注意的是,它保持了优异的抗压强度(204 MPa),表明平衡的热机械性能。这项工作成功地克服了复合材料长期存在的热力学权衡限制,为下一代高效热管理复合材料提供了新的设计指南。 来源:复合材料力学仿真Composites FEM