
今日更新:International Journal of Solids and Structures 4 篇,Journal of the Mechanics and Physics of Solids 1 篇,Mechanics of Materials 2 篇,Thin-Walled Structures 1 篇
New deformable element with arbitrary polygon shape for continuous modeling of limit an alysis
Yiwei Hua, Gabriele Milani
doi:10.1016/j.ijsolstr.2025.113745
一种可变形的任意多边形单元,用于极限分析的连续建模
This paper proposes two alternatives for the polygon discretization in the finite element limit ana lysis. The construction of the upper bound limit a nalysis for the constant-strain polygon element is first presented. However, when implementing it to ana lyze the strip footing problems, a severe locking effect is observed in the results, which stems from the constant-strain assumption. Further sensitivity ana lysis demonstrates that such a locking issue becomes significant when using polygons with complex or concave shapes. The volumetric incompressible effect will also appear in both polygon and triangular meshes in the zero-friction case, and this is more remarkable in the polygon case because of the severe interlocking among the elements. The corresponding optimization problem will become unsolvable. An approximated solution can still be obtained by including spurious interfacial friction though. Finally, to theoretically resolve the locking problem, another type of polygon element with piecewise-constant strain is developed. Reproducing the previously considered strip footing problems through the new element, the results indicate that the polygon locking is largely released after introducing the strain variation in the elements. The an alysis gives an accurate load prediction within an acceptable computational cost, presenting a great edge in precision and robustness against the established triangular elements. Nonetheless, the constant-strain polygon can remain employed in some scenarios where the locking effect is not obvious, taking merit from its great efficiency.
本文提出了有限元极限分析中多边形离散化的两种替代方法。提出了恒应变多边形单元上限分析的构造方法。然而,当将其应用于分析条形基础问题时,结果中观察到严重的锁紧效应,这源于恒应变假设。进一步的灵敏度分析表明,当使用具有复杂形状或凹形状的多边形时,这种锁定问题变得非常重要。在零摩擦情况下,多边形和三角形网格也会出现体积不可压缩效应,并且由于单元之间的严重联锁,多边形网格的体积不可压缩效应更为显著。相应的优化问题将变得不可解。通过考虑伪界面摩擦,仍然可以得到近似解。最后,为了从理论上解决锁紧问题,提出了另一种分段恒应变多边形单元。通过新单元再现了先前考虑的条形基础问题,结果表明,在单元中引入应变变化后,多边形锁定在很大程度上得到了释放。该分析在可接受的计算成本内给出了准确的载荷预测,在精度和鲁棒性方面对已建立的三角形元素具有很大的优势。尽管如此,在一些锁定效应不明显的情况下,恒应变多边形仍然可以使用,其效率很高。
Efficient wave an alysis in multi-layered locally resonant metamaterials: A semi-an alytical approach integrating dynamic homogenization
X. Kuci, M.G.D. Geers, V.G. Kouznetsova
doi:10.1016/j.ijsolstr.2025.113748
多层局部共振超材料的有效波分析:一种整合动力均匀化的半解析方法
This work proposes a novel framework that combines dynamic computational homogenization with an extended transfer matrix method (TMM) to efficiently model wave propagation in locally resonant metamaterials (LRMs) with arbitrary microstructures. Unlike other methods in the literature, which assume specific symmetries and normal incidences, the presented approach addresses general multi-layered LRM setups for 2D and 3D wave propagation, including oblique incidences. First, the dynamic computational homogenization is applied to an LRM to extract the effective homogenized inertial and mechanical characteristics, yielding a macro-scale homogenized enriched continuum description. The enriched continuum description provides frequency-dependent properties, such as the effective dynamic impedance tensor, revealing wave attenuation behaviors near resonance frequencies. Wave propagation is then a nalyzed in multi-layered LRM setups with acoustic and/or elastic incoming media. A constrained dispersion equation is solved numerically to accurately model interface interactions without relying on a nalytical simplifications. The framework is validated against direct numerical simulations (DNS) through several representative case studies, demonstrating its versatility and significant computational efficiency. This novel approach paves the way for efficient wave impedance control and trans mission ana lyses, providing new insights into the design and functionality of LRMs for advanced acoustic devices, such as acoustic filters and waveguides.
这项工作提出了一个新的框架,结合了动态计算均匀化和扩展传递矩阵方法(TMM),以有效地模拟波在具有任意微结构的局部共振超材料(lrm)中的传播。与文献中假设特定对称性和正常入射的其他方法不同,本文提出的方法解决了二维和三维波传播的一般多层LRM设置,包括斜入射。首先,将动态计算均质化应用于LRM,提取有效的均质化惯性和力学特性,得到宏观尺度的均质化富集连续体描述;丰富的连续介质描述提供了频率相关的特性,例如有效动态阻抗张量,揭示了共振频率附近的波衰减行为。然后在具有声学和/或弹性入射介质的多层LRM装置中分析波的传播。在不依赖于解析简化的情况下,对约束色散方程进行了数值求解,以准确地模拟界面相互作用。通过几个典型的案例研究,对该框架进行了直接数值模拟(DNS)验证,证明了它的通用性和显著的计算效率。这种新颖的方法为有效的波阻抗控制和传输分析铺平了道路,为先进声学设备(如声滤波器和波导)的lrm设计和功能提供了新的见解。
Numerical modeling of cell-induced displacement propagation in prestressed fibrous media
Hamed Hatami-Marbini, Ashutosh Mishra
doi:10.1016/j.ijsolstr.2025.113749
预应力纤维介质中细胞诱导位移传播的数值模拟
Fibrous networks are fundamental structural components of various biological and synthetic materials, influencing their mechanical behavior and functionality. The discrete microstructure of fibrous materials allows them to exhibit unique properties, such as fiber alignment and nonlinear strain-stiffening. Insight into key parameters governing the displacement propagation caused by a local contraction is necessary to elucidate how contracting cells establish communications with other cells in extracellular matrix (ECM). The structural integrity of ECM depends on several stabilizing factors such as prestress, which has been shown to greatly impact the propagation of displacement through random fiber networks. In this study, we used numerical simulations to investigate how the interactions between prestress and other stabilizing factors, such as fiber bending rigidity and mean network connectivity, influence the displacement propagation caused by a local contractile. The presence of compressive prestrain increases the range of displacement propagation by promoting fiber rotation/bending and creating local anisotropy. Furthermore, decreasing the bending rigidity of fibers enhanced the long-range displacement propagation. Compared to sparse random fiber networks and under otherwise identical conditions, local contraction induced shorter range displacement propagation in networks with large mean network connectivity. The insights into the interaction between local forces and microstructural features of random fiber networks contributed to a better understanding of their complex and adaptable mechanical response, which could guide current efforts on the development of advanced biomimetic materials for applications in the fields of medicine, tissue engineering, and soft robotics.
纤维网络是各种生物和合成材料的基本结构成分,影响着它们的力学行为和功能。纤维材料的离散微观结构使其表现出独特的性能,如纤维取向和非线性应变硬化。了解控制由局部收缩引起的位移传播的关键参数对于阐明收缩细胞如何与细胞外基质(ECM)中的其他细胞建立通信是必要的。ECM结构的完整性取决于几个稳定因素,如预应力,这已经被证明对位移在随机光纤网络中的传播有很大的影响。在这项研究中,我们使用数值模拟来研究预应力和其他稳定因素(如纤维弯曲刚度和平均网络连通性)之间的相互作用如何影响局部收缩引起的位移传播。压缩预应变的存在通过促进纤维的旋转/弯曲和产生局部各向异性来增加位移传播的范围。此外,降低纤维的弯曲刚度可以增强位移的长距离传播。与稀疏随机光纤网络相比,在其他条件相同的情况下,在平均网络连通性较大的网络中,局部收缩引起的位移传播距离较短。对随机纤维网络的局部力和微观结构特征之间相互作用的洞察有助于更好地理解其复杂和适应性的机械响应,这可以指导当前在医学、组织工程和软机器人领域应用的先进仿生材料的开发工作。
Size-dependent mechanics in finite cellular lattices: structural and Cosserat responses under tension and bending
Karthik Reddy Thatipelli, Harshavardhan Kalathur, S. Gouripriya
doi:10.1016/j.ijsolstr.2025.113750
有限胞格的尺寸依赖力学:张力和弯曲作用下的结构和Cosserat响应
Size effects studies in finite cellular structures are relatively unexplored, particularly in tension. In this study, we investigate size-dependent mechanical behaviour of 3D printed lattice structures under uniaxial tension and bending. Under tension, the presence and absence of solid boundary wall constraints produced divergent structural responses: boundary-constrained samples produced significant stiffening with decreasing size, while the unconstrained samples showed softening. This is due to the local rotation constraints imposed by the walls at the boundary. Adding material to the walls contributed to the structural stiffness not more than 20 %, and scaling down the sample size with the same cell size and wall thickness increased the structural stiffness by ∼200 %. The wall-free samples also showed a far more sensitive effective modulus response in tension, to the thickness-to-cell length ratio (t/L), compared to the an alytical prediction. In bending, the lattice beams treated as continuum showed strong Cosserat size effects with similar characteristic lengths of 4.2 mm and 4 mm for square and diamond (square rotated by 45°) topologies respectively, over the specimen cell sizes ranging from 2 mm to 5 mm. Importantly, cellular topology did not hinder Cosserat applicability and interpretation.
有限细胞结构的尺寸效应研究相对来说还未被探索,特别是在张力结构中。在这项研究中,我们研究了3D打印晶格结构在单轴拉伸和弯曲下的尺寸依赖性力学行为。在拉伸作用下,实体边界墙约束的存在和不存在会产生不同的结构响应:边界约束的样品随着尺寸的减小而产生显著的硬化,而无约束的样品则表现出软化。这是由于边界壁面施加的局部旋转约束。向壁中添加材料对结构刚度的贡献不超过20% %,在相同的细胞大小和壁厚下缩小样本量,结构刚度增加了~ 200 %。与分析预测相比,无壁样品在张力下对厚度与细胞长度比(t/L)的有效模量响应也更为敏感。 在弯曲过程中,作为连续体处理的晶格梁表现出强烈的Cosserat尺寸效应,在2 mm至5 mm的样品细胞尺寸范围内,正方形和菱形(正方形旋转45°)拓扑结构的特征长度分别为4.2 mm和4 mm。重要的是,蜂窝拓扑并不妨碍Cosserat的适用性和解释。
Interfacial homogenization of a periodically corrugated surface in linear elasticity
Vivek Singh, Kim Pham, Arthur Geromel Fischer, Kostas Danas
doi:10.1016/j.jmps.2025.106420
线弹性中周期性波纹表面的界面均匀化
This work presents a homogenization framework for modeling the mechanical behavior of three-dimensional linear elastic bodies with a periodically corrugated surface subjected to Dirichlet boundary conditions. The surface microstructure is assumed to be invariant along one spatial direction and periodic along the other. By combining asymptotic homogenization with matched asymptotic expansions near the surface corrugations, we derive an effective interface constitutive model that replaces the corrugated surface and the Dirichlet boundary condition with a flat boundary governed by a mixed (Robin-type) boundary condition. This boundary condition involves a second-order effective tensor, computed from elementary problems set on a representative periodic unit cell, hence allowing to account for the effect of the microstructure on the macroscopic response. We prove the symmetry and positive definiteness of the effective tensor and establish a uniqueness result of the effective problem. The model is assessed by comparison with 2D and 3D full-field simulations, demonstrating excellent agreement in both global and local responses. In particular, a cost-efficient post-processing strategy is proposed to reconstruct the local fields near the corrugations by use of a simple periodic unit cell, providing access to fine-scale information without the need for full-resolution computations.
这项工作提出了一种均匀化框架,用于模拟具有周期性波纹表面的三维线弹性体在狄利克雷边界条件下的力学行为。假设表面微观结构沿一个空间方向是不变的,沿另一个空间方向是周期性的。通过将渐近均匀化与表面波纹附近的匹配渐近展开相结合,导出了一个有效的界面本构模型,该模型将波纹表面和Dirichlet边界条件替换为由混合(robin型)边界条件控制的平面边界。该边界条件涉及二阶有效张量,由代表性周期单元胞上的基本问题计算得到,因此可以考虑微观结构对宏观响应的影响。证明了有效张量的对称性和正定性,建立了有效问题的唯一性结果。通过与2D和3D全场模拟的比较,对该模型进行了评估,结果表明,该模型在全局和局部响应方面都具有良好的一致性。特别地,提出了一种经济有效的后处理策略,利用简单的周期单元格重建波纹附近的局部场,从而在不需要全分辨率计算的情况下获得精细尺度信息。
A multi-layer model for residual stress relaxation aligned with microstructure evolution under thermal exposure and cyclic loading
Dianyin Hu, Tao Wang, Hongyang Huang, Jianxing Mao, Jier Wang, Xin Wang, Yang Gao, Liucheng Zhou, Rongqiao Wang
doi:10.1016/j.mechmat.2025.105543
基于热暴露和循环加载下微观结构演变的残余应力松弛多层模型
Residual stress relaxation phenomena under thermomechanical conditions, particularly thermal exposure and cyclic loading, constitute critical determinants of fatigue performance in surface-treated engineering components. This study systematically investigates the thermal and cyclic relaxation mechanis ms in shot-peened Ni-based superalloy GH4720Li through integrated experimental characterization and computational modeling. Through systematic characterization via X-ray diffraction (XRD) and electron backscatter diffraction (EBSD), we establish quantitative correlations between residual stress relaxation kinetics and concurrent microstructure evolution, particularly dislocation annihilation and grain boundary restructuring. Building upon these observations, a novel multilayer constitutive framework is developed to decouple the synergistic effects of microstructural evolution on residual stress relaxation dynamics. The model demonstrates predictive accuracy within 6.3% for residual stress magnitudes and 3.3% for characteristic depth parameters when compared to stabilized thermal exposure data. Under cyclic loading conditions, corresponding errors remain constrained to 15.5% and 4.8%, respectively. Such precision validates the model's capability to isolate microstructure-driven relaxation mechanis ms from purely mechanical contributions. This multi-physics framework provides an unprecedented quantitative tool for optimizing surface-engineered components operating in combined high-temperature and cyclic loading environments, effectively bridging the gap between microstructure-aware modeling and industrial fatigue life prediction.
热机械条件下的残余应力松弛现象,特别是热暴露和循环加载,是表面处理工程部件疲劳性能的关键决定因素。本研究通过实验表征和计算建模相结合的方法,系统地研究了喷丸ni基高温合金GH4720Li的热弛豫机制和循环弛豫机制。通过x射线衍射(XRD)和电子背散射衍射(EBSD)的系统表征,我们建立了残余应力松弛动力学与同步微观结构演化,特别是位错湮灭和晶界重构之间的定量相关性。在这些观察的基础上,开发了一种新的多层本构框架,以解耦微观结构演化对残余应力松弛动力学的协同效应。与稳定的热暴露数据相比,该模型对残余应力值的预测精度在6.3%以内,对特征深度参数的预测精度在3.3%以内。在循环加载条件下,相应的误差分别被限制在15.5%和4.8%。这样的精度验证了该模型将微观结构驱动的松弛机制与纯粹的力学贡献分离开来的能力。这种多物理场框架提供了一种前所未有的定量工具,用于优化在高温和循环加载环境下运行的表面工程部件,有效地弥合了微结构感知建模和工业疲劳寿命预测之间的差距。
Learning a potential formulation for rate-and-state friction
Shengduo Liu, Kaushik Bhattacharya, Nadia Lapusta
doi:10.1016/j.mechmat.2025.105540
学习速率-状态摩擦的潜在公式
Empirical rate-and-state friction laws are widely used in geophysics and engineering to simulate interface slip. They postulate that the friction coefficient depends on the local slip rate and a state variable that reflects the history of slip. Depending on the parameters, rate-and-state friction can be either rate-strengthening, leading to steady slip, or rate-weakening, leading to unsteady stick–slip behavior modeling earthquakes. Rate-and-state friction does not have a potential or variational formulation, making implicit solution approaches difficult and implementation numerically expensive. In this work, we propose a potential formulation for the rate-and-state friction. We formulate the potentials as neural networks and train them so that the resulting behavior emulates the empirical rate-and-state friction. We show that this potential formulation enables implicit time discretization leading to efficient numerical implementation.
经验速率-状态摩擦定律广泛应用于地球物理和工程中模拟界面滑移。他们假设摩擦系数取决于局部滑移率和反映滑移历史的状态变量。根据参数的不同,速率-状态摩擦既可以是速率增强,导致稳定滑动,也可以是速率减弱,导致非定常粘滑行为模拟地震。速率和状态摩擦没有潜在的或变分的公式,使得隐式解决方法变得困难,并且在数值上实现昂贵。在这项工作中,我们提出了速率和状态摩擦的潜在公式。我们将电位表述为神经网络,并对其进行训练,使结果行为模拟经验速率与状态摩擦。我们表明,这种潜在的公式使隐式时间离散化导致有效的数值实现。
Three-dimensional magneto-thermoelastic coupling resonance of spinning functionally graded cylindrical shells with porosity
Jianbo Feng, Yuda Hu
doi:10.1016/j.tws.2025.114175
具有孔隙度的自旋梯度功能圆柱壳的三维磁热耦合共振
This study investigates the magneto-thermoelastic coupling resonance and bifurcation behaviors of spin ferromagnetic functionally graded (FG) cylindrical shells with porosity under armature action. The shells contain uniformly or non-uniformly distributed pores, and their physical properties are evaluated using a modified mixture rule combined with the Voigt model. Temperature-dependent material properties and geometric nonlinearity induced by large deformations are incorporated to establish constitutive relations for Kirchhoff-Love-type thin shells. Moreover, the nonlinear magnetization characteristics of ferromagnetic materials are considered. The governing equations are derived via Hamilton’s principle and discretized using the Galerkin truncation method. By integrating the alternating frequency-time harmonic balance method (AFT-HBM) with a predictor-corrector algorithm, the nonlinear equations are solved. Numerical case studies are conducted to an alyze the effects of physical parameters on the primary and superharmonic resonances. Furthermore, bifurcation behaviors are discussed. Notably, super harmonic resonance demonstrates higher sensitivity to these parameters compared to primary resonance. Adjusting material configurations effectively suppresses vibrations induced by external physical fields.
研究了具有孔隙度的自旋铁磁梯度(FG)圆柱壳在电枢作用下的磁-热弹性耦合共振和分岔行为。采用改进的混合规则并结合Voigt模型对其物理性质进行了评价。结合材料的温度依赖性和大变形引起的几何非线性,建立了kirchhoff - love型薄壳的本构关系。此外,还考虑了铁磁材料的非线性磁化特性。利用哈密顿原理推导了控制方程,并用伽辽金截断法进行了离散化。通过将交变频时谐波平衡法(AFT-HBM)与预测校正算法相结合,求解了非线性方程。通过数值算例分析了物理参数对原谐振和超谐振的影响。进一步讨论了分支行为。值得注意的是,与主共振相比,超谐波共振对这些参数表现出更高的灵敏度。调整材料结构可以有效地抑制外部物理场引起的振动。