首页/文章/ 详情

为什么电机启动电流大?启动后电流又小了?

6小时前浏览7
  

电机启动电流到底有多大?  


 

电机的启动电流是额定电流的多少倍说法不一,很多都是根据具体情况来说的。如说十几倍的、6~8倍的、5~8倍的、5~7倍的等。



一种是说法说在启动瞬间(即启动过程的初始时刻)电机的转速为零时,这时的电流值应该是它的堵转电流值。


对最经常使用的Y系列三相异步电动机,在JB/T 10391 《Y系列三相异步电动机》标准中就有明确的规定。其中5.5kW电机的堵转电流与额定电流之比的规定值如下:

同步转速 3000 时,堵转电流与额定电流之比为7.0;

同步转速 1500 时,堵转电流与额定电流之比为7.0;

同步转速 1000时,堵转电流与额定电流之比为6.5;

同步转速 750 时,堵转电流与额定电流之比为6.0。

5.5kW电机功率比较大,功率小些的电动机启动电流和额定电流比值要小些,所以电工教材和很多地方都是说异步电动机启动电流是额定工作电流的4~7倍。



     

为什么电机起动电流大?起动后电流又小了呢?      


   

这里我们有必要从电机启动原理和电机旋转原理的角度来理解:

当感应电动机处在停止状态时,从电磁的角度看,就像变压器,接到电源去的定子绕组相当于变压器的一次线圈,成闭路的转子绕组相当于变压器被短路的二次线圈;定子绕组和转子绕组间无电的的联系,只有磁的联系,磁通经定子、气隙、转子铁芯成闭路。


当合闸瞬间,转子因惯性还未转起来,旋转磁场以最大的切割速度——同步转速切割转子绕组,使转子绕组感应起可能达到的最高的电势,因而,在转子导体中流过很大的电流,这个电流产生抵消定子磁场的磁能,就象变压器二次磁通要抵消一次磁通的作用一样。


而定子方面为了维护与该时电源电压相适应的原有磁通,遂自动增加电流。因为此时转子的电流很大,故定子电流也增得很大,甚至高达额定电流的4~7倍,这就是启动电流大的缘由。


启动后电流为什么小:随着电动机转速增高,定子磁场切割转子导体的速度减小,转子导体中感应电势减小,转子导体中的电流也减小,于是定子电流中用来抵消转子电流所产生的磁通的影响的那部分电流也减小,所以定子电流就从大到小,直到正常。


 

 

减小电动机启动电流的方法有哪些?  


 

常见减小电动机启动电流的启动方法有直接启动,串电阻启动,自耦变压器启动,星三角减压启动及变频器启动的方法来减小对电网的影响。





直接启动

直接启动就是将电机的定子绕组直接接入电源,在额定电压下起动,具有起动转矩大、起动时间短的特点,也是最简单、最经济和最可靠的起动方式。全压起动时电流大,而起动转矩不大,操作方便,起动迅速,但是这种启动方式对电网容量和负载要求比较大,主要适用于1W以下的电机启动。


串电阻启动

电机串电阻启动,也就是降压启动的一种方法。在启动过程中,在定子绕组电路中串联电阻,当启动电流通过时,就在电阻上产生电压降,减少了加在定子绕组上面的电压,这样就可以达到减小启动电流目的。


自耦变压器启动

利用自耦变压器的多抽头减压,既能适应不同负载起动的需要,又能得到更大的起动转矩,是一种经常被用来起动较大容量电动机的减压起动方式。它的最大优点是起动转矩较大,当其绕组抽头在80%处时,起动转矩可达直接起动时的64%,并且可以通过抽头调节起动转矩。


星三角减压启动

对于正常运行的定子绕组为三角形接法的鼠笼式异步电动机来说,如果在起动时将定子绕组接成星形,待启动完毕后再接成三角形,就可以降低启动电流,减轻它对电网的冲击。这样的启动方式称为星三角减压起动,或简称为星三角启动。采用星三角启动时,启动电流只是原来按三角形接法直接启动时的1/3。在星三角启动时,启动电流才2-2.3倍。


这就是说采用星三角启动时,启动转矩也降为原来按三角形接法直接起动时的1/3。适用于无载或者轻载启动的场合。并且同任何别的减压启动器相比较,其结构最简单,价格也最便宜。除此之外,星三角启动方式还有一个优点,即当负载较轻时,可以让电动机在星形接法下运行。此时,额定转矩与负载可以匹配,这样能使电动机的效率有所提高,并因之节约了电力消耗。


变频器启动

变频器是现代电动机控制领域技术含量最高,控制功能最全、控制效果最好的电机控制装置,它通过改变电网的频率来调节电动机的转速和转矩。因为涉及到电力电子技术,微机技术,因此成本高,对维护技术人员的要求也高,因此主要用在需要调速并且对速度控制要求高的领域。

声明:


 
声明:文章来源网络。本号对所有原创、转载文章的陈述与观点均保持中立,推送文章仅供读者学习和交流。文章、图片等版权归原作者享有,如有侵权,联系删除。  

来源:硬件笔记本
电源电路电力电子电机控制
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2025-11-11
最近编辑:6小时前
硬件笔记本
本科 一点一滴,厚积薄发。
获赞 156粉丝 45文章 526课程 0
点赞
收藏
作者推荐

不理解EMC,画不好PCB!

除了元器件的选择和电路设计之外,良好的印制电路板(PCB)设计在电磁兼容性中也是一个非常重要的因素。PCB EMC设计的关键,是尽可能减小回流面积,让回流路径按照设计的方向流动。最常见返回电流问题来自于参考平面的裂缝、变换参考平面层、以及流经连接器的信号。跨接电容器或是去耦合电容器可能可以解决一些问题,但是必须要考虑到电容器、过孔、焊盘以及布线的总体阻抗。本文将从PCB的分层策略、布局技巧和布线规则三个方面,介绍EMC的PCB设计技术。PCB分层策略电路板设计中厚度、过孔制程和电路板的层数不是解决问题的关键,优良的分层堆叠是保证电源汇流排的旁路和去耦、使电源层或接地层上的瞬态电压最小并将信号和电源的电磁场屏蔽起来的关键。从信号走线来看,好的分层策略应该是把所有的信号走线放在一层或若干层,这些层紧挨着电源层或接地层。对于电源,好的分层策略应该是电源层与接地层相邻,且电源层与接地层的距离尽可能小,这就是我们所讲的“分层”策略。下面我们将具体谈谈优良的PCB分层策略。1.布线层的投影平面应该在其回流平面层区域内。布线层如果不在其回流平面层地投影区域内,在布线时将会有信号线在投影区域外,导致“边缘辐射”问题,并且还会导致信号回路面积地增大,导致差模辐射增大。2.尽量避免布线层相邻的设置。因为相邻布线层上的平行信号走线会导致信号串扰,所以如果无法避免布线层相邻,应该适当拉大两布线层之间的层间距,缩小布线层与其信号回路之间的层间距。3.相邻平面层应避免其投影平面重叠。因为投影重叠时,层与层之间的耦合电容会导致各层之间的噪声互相耦合。多层板设计时钟频率超过5MHz,或信号上升时间小于5ns时,为了使信号回路面积能够得到很好的控制,一般需要使用多层板设计。在设计多层板时应注意如下几点原则:1.关键布线层(时钟线、总线、接口信号线、射频线、复位信号线、片选信号线以及各种控制信号线等所在层)应与完整地平面相邻,优选两地平面之间,如图1所示。关键信号线一般都是强辐射或极其敏感的信号线,靠近地平面布线能够使其信号回路面积减小,减小其辐射强度或提高抗干扰能力。图1 关键布线层在两地平面之间2.电源平面应相对于其相邻地平面内缩(建议值5H~20H)。电源平面相对于其回流地平面内缩可以有效抑制“边缘辐射”问题,如图2所示。图2电源平面应相对于其相邻地平面内缩此外,单板主工作电源平面(使用最广泛的电源平面)应与其地平面紧邻,以有效地减小电源电流的回路面积,如图3所示。图3 电源平面应与其地平面紧邻3.单板TOP、BOTTOM层是否无≥50MHz的信号线。如有,最好将高频信号走在两个平面层之间,以抑制其对空间的辐射。单层板和双层板设计对于单层板和双层板的设计,主要应注意关键信号线和电源线的设计。电源走线附近必须有地线与其紧邻、平行走线,以减小电源电流回路面积。单层板的关键信号线两侧应该布“Guide Ground Line”,如图4所示。双层板的关键信号线地投影平面上应有大面积铺地,或者同单层板地处理办法,设计“Guide Ground Line”,如图5所示。关键信号线两侧地“保卫地线”一方面可以减小信号回路面积,另外,还可以防止信号线与其他信号线之间地串扰。图4单层板的关键信号线两侧布“Guide Ground Line”图5 双层板的关键信号线地投影平面上大面积铺地总的来说,PCB板的分层可以依据下表来设计。PCB布局技巧PCB布局设计时,应充分遵守沿信号流向直线放置的设计原则,尽量避免来回环绕,如图6所示。这样可以避免信号直接耦合,影响信号质量。此外,为了防止电路之间、电子元器件之间的互相干扰和耦合,电路的放置和元器件的布局应遵从如下原则:图6 电路模块沿信号流向直线放置1.单板上如果设计了接口“干净地”,则滤波、隔离器件应放置在“干净地”和工作地之间的隔离带上。这样可以避免滤波或隔离器件通过平面层互相耦合,削弱效果。此外,“干净地”上,除了滤波和防护器件之外,不能放置任何其他器件。2.多种模块电路在同一PCB上放置时,数字电路与模拟电路、高速与低速电路应分开布局,以避免数字电路、模拟电路、高速电路以及低速电路之间的互相干扰。另外,当线路板上同时存在高、中、低速电路时,为了避免高频电路噪声通过接口向外辐射,应该遵从图7中的布局原则。图7 高、中、低速电路布局原则3.线路板电源输入口的滤波电路应应靠近接口放置,避免已经经过了滤波的线路被再次耦合。图8 电源输入口的滤波电路应应靠近接口放置4.接口电路的滤波、防护以及隔离器件靠近接口放置,如图9所示,可以有效的实现防护、滤波和隔离的效果。如果接口处既有滤波又有防护电路,应该遵从先防护后滤波的原则。因为防护电路是用来进行外来过压和过流抑制的,如果将防护电路放置在滤波电路之后,滤波电路会被过压和过流损坏。此外,由于电路的输入输出走线相互耦合时会削弱滤波、隔离或防护效果,布局时要保证滤波电路(滤波器)、隔离以及防护电路的输入输出线不要相互耦合。图9接口电路的滤波、防护以及隔离器件靠近接口放置5.敏感电路或器件(如复位电路等)远离单板各边缘特别是单板接口侧边缘至少1000mil。6.存在较大电流变化的单元电路或器件(如电源模块的输入输出端、风扇及继电器)附近应放置储能和高频滤波电容,以减小大电流回路的回路面积。7.滤波器件需并排放置,以防止滤波后的电路被再次干扰。8.晶体、晶振、继电器、开关电源等强辐射器件远离单板接口连接器至少1000mil。这样可将干扰直接向外辐射或在外出电缆上耦合出电流来向外辐射。PCB布线规则除了元器件的选择和电路设计之外,良好的印制电路板(PCB)布线在电磁兼容性中也是一个非常重要的因素。既然PCB是系统的固有成分,在PCB布线中增强电磁兼容性不会给产品的最终完成带来附加费用。任何人都应记住一个拙劣的PCB布线能导致更多的电磁兼容问题,而不是消除这些问题,在很多例子中,就算加上滤波器和元器件也不能解决这些问题。到最后,不得不对整个板子重新布线。因此,在开始时养成良好的PCB布线习惯是最省钱的办法。下面将对PCB布线的一些普遍规则和电源线、地线及信号线的设计策略进行介绍,最后,根据这些规则,对空气调节器的典型印制电路板电路提出改进措施。1. 布线分离布线分离的作用是将PCB同一层内相邻线路之间的串扰和噪声耦合最小化。3W规范表明所有的信号(时钟,视频,音频,复位等等)都必须像图10所示那样,在线与线,边沿到边沿间予以隔离。为了进一步的减小磁耦合,将基准地布放在关键信号附近以隔离其他信号线上产生的耦合噪声。图10 线迹隔离2.保护与分流线路设置分流和保护线路是对关键信号,比如对在一个充满噪声的环境中的系统时钟信号进行隔离和保护的非常有效的方法。在图21中,PCB内的并联或者保护线路是沿着关键信号的线路布放。保护线路不仅隔离了由其他信号线上产生的耦合磁通,而且也将关键信号从与其他信号线的耦合中隔离开来。分流线路和保护线路之间的不同之处在于分流线路不必被端接(与地连接),但是保护线路的两端都必须连接到地。为了进一步的减少耦合,多层PCB中的保护线路可以每隔一段就加上到地的通路。图11 分流和保护线路3.电源线设计根据印制线路板电流的大小,尽量加粗电源线宽度,减少环路电阻。同时、使电源线、地线的走向和数据传递的方向一致,这样有助于增强抗噪声能力。在单面板或双面板中,如果电源线走线很长,应每隔3000mil对地加去耦合电容,电容取值为10uF+1000pF。4.地线设计地线设计的原则是:(1)数字地与模拟地分开。若线路板上既有逻辑电路又有线性电路,应使它们尽量分开。低频电路的地应尽量采用单点并联接地,实际布线有困难时可部分串联后再并联接地。高频电路宜采用多点串联接地,地线应短而粗,高频元件周围尽量用栅格状大面积地箔。(2)接地线应尽量加粗。若接地线用很纫的线条,则接地电位随电流的变化而变化,使抗噪性能降低。因此应将接地线加粗,使它能通过三倍于印制板上的允许电流。如有可能,接地线应在2~3mm以上。(3)接地线构成闭环路。只由数字电路组成的印制板,其接地电路布成团环路大多能提高抗噪声能力。5.信号线设计对于关键信号线,如果单板有内部信号走线层,则时钟等关键信号线布在内层,优先考虑优选布线层。另外,关键信号线一定不能跨分割区走线,包括过孔、焊盘导致的参考平面间隙,否则会导致信号回路面积的增大。而且关键信号线应距参考平面边沿≥3H(H为线距离参考平面的高度),以抑制边缘辐射效应。对于时钟线、总线、射频线等强辐射信号线和复位信号线、片选信号线、系统控制信号等敏感信号线,应远离接口外出信号线。从而避免强辐射信号线上的干扰耦合到外出信号线上,向外辐射;也避免接口外出信号线带进来的外来干扰耦合到敏感信号线上,导致系统误操作。对于差分信号线应同层、等长、并行走线,保持阻抗一致,差分线间无其它走线。因为保证差分线对的共模阻抗相等,可以提高其抗干扰能力。根据以上布线规则,对空气调节器的典型印制电路板电路进行改进优化,如图12所示。图12 改进空气调节器的典型印制电路板电路总体来说,PCB设计对EMC的改善是:在布线之前,先研究好回流路径的设计方案,就有最好的成功机会,可以达成降低EMI辐射的目标。而且在还没有动手实际布线之前,变更布线层等都不必花费任何钱,是改善EMC最便宜的做法。声明: 声明:文章来源网络。本号对所有原创、转载文章的陈述与观点均保持中立,推送文章仅供读者学习和交流。文章、图片等版权归原作者享有,如有侵权,联系删除。 来源:硬件笔记本

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习计划 福利任务
下载APP
联系我们
帮助与反馈