首页/文章/ 详情

Buck风扇驱动电路

13分钟前浏览11
传统的风扇驱动电路采用三极管直接降压方式,将电压差直接损耗在三极管上,这种方式具有直流驱动、电压波动小等优点,但是效率低。如输出风扇电压为9V,输入VCC_FAN为14.5V,则效率为9V/14.5V=62%,而Buck电路能够将效率提高到90%以上,FAN损耗大大降低,有助于提高模块的整机效率。

图1 主电路原理图

很多人对上图中的Buck circuit电路很疑惑,为什么是这种形式呢?跟传统的Buck电路不一样啊?传统的Buck电路及两种模态的工作过程如下:

传统的Buck电路

传统的Buck电路两种模态的工作过程

相比于传统电路,我们的更改为:

① 开关管Q由正母线挪至负母线;

② 续流电感由正母线挪至负母线。

为什么要这样更改呢?首先,如果采用传统的Buck电路,则存在如下问题:

① 开关管由于在正母线,因此驱动需要采用浮驱技术,驱动电路更复杂;

② 在Buck工作过程中,电感始终处于充电、放电状态,因此,其两端的电压始终是变化的:开关管导通充电时,VL=Vin-Vo;开关管断开,电感开始续流时,VL=Vo。因此,电感两端的电压在一个周期始终处于两种电压状态切换中(CCM态下)。由此,输出电容两端的电压也会跟着相应的变化,尽管电容两端的电压差保持稳定,但这样带来了电压采样麻烦和电容输出电压纹波增加的风险,较大的纹波可能会对风扇的寿命产生极大的影响。


采用我们优化后的新电路,则可以轻松解决以上两个问题:

① 开关管对地驱动,驱动电路简单;

② Buck电感置于负母线,输出电容两端电压均是稳定电平(电容电压作为被控对象,电压稳定),便于采样和减小输出电压纹波;

③ 而且,其两种工作模态跟老Buck电路一样,电路功能一样,两种工作模态如下:

由于输出风扇电压是浮地的,因此,采样电路需要浮采或差分采样。在我们的电路里,我们采用了对地差分采样,即电容两端的电压分别对AGND采样,然后再作差分,即可得电容电压。由于电容正电压为VCC_FAN,而我们的VCC_FAN作为辅助电源的被控电压,稳定的保持在14.5V,因此,不需要对该电压进行采样,只需要对电容负电压FANGND进行采样即可,最终通过后台软件计算出风扇电压Vfan=14.5V-FANGND即可。  

声明:


 
声明:文章来源艾伊电源。本号对所有原创、转载文章的陈述与观点均保持中立,推送文章仅供读者学习和交流。文章、图片等版权归原作者享有,如有侵权,联系删除。  

来源:硬件笔记本
电源电路电子
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2025-11-21
最近编辑:13分钟前
硬件笔记本
本科 一点一滴,厚积薄发。
获赞 157粉丝 46文章 665课程 0
点赞
收藏
作者推荐

在PMOS断开的时候,输出电压Vout出现回沟现象

电路现象:PMOS断开后,输出端Vout电压先降低,后上升,再下降,随即下电波形出现回沟。(由以下电路展开)以上为PMOS开关仿真电路,其将负载换成了一个开关电路,在改变负载以后,Vout的下电波形就不正常了,这是为什么呢?PMOS从导通到关断时,PMOS的阻抗会从接近0(导通),再到电阻无穷大(断开),这里会有一段过程,而PMOS会存在一定的阻值,负载也非恒定电阻。在Vout下电过程中,负载获得的电压会下降到一定程度,随后可能会因为欠压突然停止工作,所需要的电流会急剧减小。即其等效电阻突然变大,导致它获得的分压变大,这时就会出现以上的情况,Vout电压就涨上去了。也就是说,Vout的电压等于Vin在PMOS和负载上面的分压,如果负载RL突然变大,那么就有可能出现Vout突然上涨的情况。因此,当PMOS从导通到关断切换期间,PMOS的Vgs电压等于其Vgsth,就出现了回沟。那要如何解决这个问题呢?有两个选择。1、可以让PMOS更快的关闭,例如将PMOS的g和s跨接的电容从100nF调整到10nF,回沟就基本没有了。2.在输出端加一个滤波电容,避免负载等效RL突然变大。这是因为增加一个滤波电容以后,等效负载会变成原本的RL和新增加电容阻抗的并联。尽管原本的RL突然变大,由于有电容阻抗的存在,负载阻抗就不会超过电容的阻抗。PMOS关断的瞬间,过程是比较短暂的,信号可以当作交流,因此电容在这不可以看成是 开路,而是构成总的阻抗的一部分。只要电容值合理,基本是可以解决电容回沟问题的。(如下图)声明: 声明:文章来源电子工程师笔记。本号对所有原创、转载文章的陈述与观点均保持中立,推送文章仅供读者学习和交流。文章、图片等版权归原作者享有,如有侵权,联系删除。 来源:硬件笔记本

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习计划 福利任务
下载APP
联系我们
帮助与反馈