今日更新:Composites Part A: Applied Science and Manufacturing 1 篇,Composites Part B: Engineering 3 篇,Composites Science and Technology 1 篇
Three-in-one effect: Enhancement of processability, anti-aging and mechanical properties of phthalonitrile via modification with novel rare earth coordinated benzimidazole compound
Haizhou Fan, Benhao Xin, Yuechao Zhao, Ying Guo, Kun Zheng, Min Li, Heng Zhou, Tong Zhao
doi:10.1016/j.compositesa.2025.109305
三位一体效应:用新型稀土配位苯并咪唑化合物改性邻苯二腈,可提高其加工性、抗老化性和力学性能
To further improve the comprehensive performance of phthalonitrile (PN), a novel compound SiBPN-Ce was prepared using 2-benzimidazolinone (2-BI), diphenyldichlorosilane (DPDCS), 4-aminophthalonitrile (4-APN), and cerium chloride. The addition of SiBPN-Ce decreased the viscosity of PN exponentially and reduced the peak curing temperature by 29.4 °C. Through copolymerization modification, a highly efficient physical–chemical hybrid reinforcement mechanis m was introduced into PN by SiBPN-Ce. The results indicated that SiBPN can effectively increase the temperature of 5 % mass loss (T5%) and char yield of PN by 29 °C and 7.2 %, respectively. In the aging test at 350 °C, the formation of a SiO2-Ce protective layer derived from SiBPN-Ce delayed the occurrence of microcracks on the PN matrix surface by 60 h. Meanwhile, PN modified with SiBPN-Ce (SiBPN15-Ce) retained most of its surface morphology after aging for 100 h. For the SiBPN-Ce composite, its flexural strength (FS) and interlaminar shear strength (ILSS) increased by 449.1 MPa and 17.2 MPa respectively compared to pure PN composite. Based on all the results, this physical–chemical hybrid reinforcement mechanis m in SiBPN15-Ce was carefully ana lyzed.
为进一步提高邻苯二腈(PN)的综合性能,以2-苯并咪唑啉酮(2-BI)、二苯基二氯硅烷(DPDCS)、4-氨基邻苯二腈(4-APN)和氯化铈为原料制备了新型化合物SiBPN-Ce。SiBPN-Ce的加入使PN粘度呈指数级下降,峰值固化温度降低29.4 ℃。通过共聚改性,SiBPN-Ce在PN中引入了一种高效的物理-化学杂化增强机制。结果表明,SiBPN能有效提高5 %失重温度(T5%),炭产率分别提高29 ℃和7.2 %。在350 ℃的时效试验中,SiBPN-Ce生成的SiO2-Ce保护层的形成使PN基体表面微裂纹的发生延迟了60 h。同时,经过SiBPN-Ce修饰的PN (SiBPN15-Ce)在老化100 h后,其表面形貌基本保持不变。SiBPN-Ce复合材料的抗弯强度(FS)和层间剪切强度(ILSS)分别比纯PN复合材料提高了449.1 MPa和17.2 MPa。基于以上结果,仔细分析了SiBPN15-Ce中这种物理-化学杂化强化机制。
Material Removal Mechanis ms during Micro-Hole Drilling of UD-Cf/SiC Composites: A Study via Nano-Scratch and Drilling Tests
Haotian Yang, Guolong Zhao, Feng Jiang, Li Zhu, Zhiwen Nian, Liang Li
doi:10.1016/j.composites b.2025.113031
UD-Cf/SiC复合材料微孔钻削过程中材料去除机制:纳米划痕和钻削试验研究
Carbon fiber-reinforced ceramic matrix composites (Cf/SiCs) are widely used in aerospace due to their exceptional strength-to-weight ratio. However, their high hardness and anisotropy often lead to rapid tool wear and poor drilling performance. To investigate their fracture behavior, nano scratch was conducted on unidirectional carbon fiber-reinforced SiC composites (UD-Cf/SiCs). The ductile-brittle transition depths of carbon fibers in the radial, axial, and end-face directions were 907.2 nm, 961.3 nm, and 455.6 nm, respectively. Meanwhile, the micro-macro brittle transition depths were 3013.4 nm, 2759.4 nm, and 5101.2 nm, respectively. Furthermore, drilling tests were conducted on UD-Cf/SiCs to produce 600 μm diameter holes using parallel drilling (PD) and vertical drilling (VD) processes. The thrust force in the VD process was higher than in the PD process at a feed rate (f) of 0.3 μm/r, nearly equal at f of 0.9 μm/r, and lower at f of 1.8 μm/r. The PD process caused less exit damage than the VD process at 0.3-1.5 μm/r but more at 1.8 μm/r. With increasing f, the carbon fibers gradually transitioned from ductile fracture to micro- and macro-brittle fracture. The primary removal mechanis ms of the carbon fibers involved compression, shear, and bending fracture. Hole-wall with longitudinal fibers exhibited the best integrity (Ra increasing from 0.3940 μm to 1.1110 μm), whereas perpendicular and transverse bundles deteriorated more severely (Ra reaching up to 1.6991 μm to 3.7058 μm). Notably, the most severe subsurface damage occurred in holes with perpendicularly oriented fibers, reaching a depth of approximately 6.93 μm.
碳纤维增强陶瓷基复合材料(Cf/SiCs)因其卓越的强度重量比而在航空航天领域得到广泛应用。然而,其高硬度和各向异性往往导致刀具磨损迅速且钻孔性能不佳。为了研究其断裂行为,在单向碳纤维增强 SiC 复合材料(UD-Cf/SiCs)上进行了纳米划痕实验。碳纤维在径向、轴向和端面方向的韧脆转变深度分别为 907.2 纳米、961.3 纳米和 455.6 纳米。同时,微宏观脆性转变深度分别为 3013.4 纳米、2759.4 纳米和 5101.2 纳米。此外,对 UD-Cf/SiCs 进行了钻孔试验,采用平行钻孔(PD)和垂直钻孔(VD)工艺钻出直径为 600 微米的孔。在进给量(f)为 0.3 微米/转时,VD 工艺的轴向力高于 PD 工艺;在 f 为 0.9 微米/转时,两者几乎相等;在 f 为 1.8 微米/转时,PD 工艺的轴向力低于 VD 工艺。在 0.3 - 1.5 微米/转时,PD 工艺造成的出口损伤小于 VD 工艺,但在 1.8 微米/转时则相反。随着进给量的增加,碳纤维逐渐从韧性断裂转变为微观和宏观脆性断裂。碳纤维的主要去除机制包括压缩、剪切和弯曲断裂。纵向纤维的孔壁完整性最佳(粗糙度从 0.3940 微米增加到 1.1110 微米),而垂直和横向纤维束的损伤则更为严重(粗糙度达到 1.6991 微米至 3.7058 微米)。值得注意的是,垂直排列纤维的孔洞中出现了最严重的亚表面损伤,损伤深度约为 6.93 微米。
A MODEL BASED ACCELERATED RTM PROCESS DESIGN FOR OPTIMAL PERFORMANCE
Sanjay Sharma, Xiao Zhang, Jesse Grant, Ryan Fitzhugh, Jason W. Scharf
doi:10.1016/j.composites b.2025.113008
基于模型的加速RTM工艺优化设计
Typical carbon-fiber reinforced polymer (CFRP) composite high-rate manufacturing processes require a multi-physics understanding of the key material and process design variables. A model-based approach may deliver an optimized manufacturing process and yet require experimental validation of quality and mechanical performance to make it an acceptable solution to the industry. The models, especially if 3D, are complex and require extensive characterization with a cross-functional level of resources. This study captures (A) the development of a 1D multi-physics heuristic model applicable to any material system, and (B) the development of an accelerated resin transfer molding (RTM) process design for low-permeability fiber reinforcement using this 1D heuristic model. The laminates manufactured using this model-based accelerated approach meet the specifications on quality and key mechanical properties. Hexcel’s biaxial IM8 HiMax® non-crimp fabric with a thermoplastic veil and 1078-1 resin are chosen for the study to develop a process design methodology for (177 °C) cure epoxy. Multi-physics material models of IM8 HiMax® and 1078-1 resin are used to simulate and predict the optimal cure cycles. Critical mechanical testing compares the outcomes from different cure cycles, including a baseline process nominally followed by the industry. Results show that the accelerated-cure panels (50% cycle time compared with the baseline) are of good quality and perform just as well regarding the mechanical properties. This model-based approach can be extended to more complex geometry and structures for this material system and/or applied to other composite material systems.
典型的碳纤维增强聚合物(CFRP)复合材料的高速制造工艺需要对关键材料和工艺设计变量进行多物理场理解。基于模型的方法可以提供优化的制造过程,但需要对质量和机械性能进行实验验证,才能使其成为行业可接受的解决方案。模型,特别是3D模型,是复杂的,需要广泛的表征和跨功能的资源水平。本研究捕获了(A)适用于任何材料系统的一维多物理场启发式模型的开发,以及(B)使用该一维启发式模型开发用于低渗透纤维增强的加速树脂传递成型(RTM)工艺设计。利用这种基于模型的加速方法制造的层压板在质量和关键力学性能上均满足要求。Hexcel的双轴IM8 HiMax®不卷曲织物与热塑性面纱和1078-1树脂被选择用于研究开发(177°C)固化环氧树脂的工艺设计方法。使用IM8 HiMax®和1078-1树脂的多物理场材料模型来模拟和预测最佳固化周期。关键力学测试比较不同固化周期的结果,包括行业名义上遵循的基线过程。结果表明,加速固化板(循环时间为基准的50%)具有良好的质量和力学性能。这种基于模型的方法可以扩展到更复杂的几何和结构的材料系统和/或应用到其他复合材料系统。
Towards Overcoming Hetero-Deformation-Induced Hardening and Strain Localization Trade-off: A Review of Micro/Nano Hybrid-Reinforced Composites
Elham Garmroudi Nezhad, Farhad Saba, Genlian Fan, Zhanqiu Tan, Zhiqiang Li
doi:10.1016/j.composites b.2025.113028
克服异质变形诱导硬化和应变局部化权衡:微纳米混合增强复合材料的研究进展
Particle-reinforced metal matrix composites (PRMMCs) often suffer from high stress concentration regions due to incompatibility between hard reinforcements and the soft matrix. Reinforcement hybridization is a promising strategy; however, traditional hybrid MMCs with homogeneous/random microstructures typically exhibit a strength-ductility-toughness trade-off, limiting their practical applications. In heterogeneous microstructures, deformation incompatibility between hard and soft domains—accommodated by geometrically necessary dislocations (GNDs)—generates hetero-deformation-induced (HDI) hardening, which is considered the key factor behind their exceptional mechanical properties. This review examines micro/nano hybrid reinforcements in MMCs to optimize heterogeneity, enhancing HDI hardening effects while mitigating stress concentrations. We explore architectured micro/nano hybrid composites as a promising toughening strategy, demonstrating how the synergy of micro- and nano-reinforcements in tailored architectures can transform conventional composites into strong, tough materials. Key topics include typical architectures, mechanical property characterization, strengthening/toughening mechanis ms, and theoretical insights for future advancements in this emerging class of MMCs. Additionally, we highlight the new concept of the trade-off between HDI hardening and strain localization in heterostructures.
颗粒增强金属基复合材料(PRMMCs)由于硬增强材料与软基体不相容,往往存在高应力集中区。强化杂交是一种很有前途的杂交策略;然而,具有均匀/随机微观结构的传统混合mmc通常表现出强度-塑性-韧性的权衡,限制了它们的实际应用。在非均质微结构中,由几何必要位错(GNDs)调节的硬域和软域之间的变形不相容产生了异质变形诱导(HDI)硬化,这被认为是其优异力学性能背后的关键因素。本文综述了微/纳米复合增强材料在mmc中的应用,以优化非均质性,增强HDI硬化效果,同时减轻应力集中。我们探索了微纳米复合材料作为一种有前途的增韧策略,展示了微纳米增强在定制结构中的协同作用如何将传统复合材料转变为强韧的材料。关键主题包括典型的结构,机械性能表征,强化/增韧机制,以及对这类新兴mmc未来发展的理论见解。此外,我们强调了异质结构中HDI硬化和应变局部化之间权衡的新概念。
Dual-Functional Phase Change Hydrogels with Boron Nitride Networks: High-Performance Thermal Interface Materials for Electronics Cooling
Luying Qin, Lingzhi Zhong, Fuyu Qin, Jun Wang, Tao Xu, Mengjie Song, Yi Yang, Weitao Shao
doi:10.1016/j.compscitech.2025.111386
具有氮化硼网络的双功能相变水凝胶:用于电子冷却的高性能热界面材料
With the rapid development of high-frequency 5G communication technologies, thermal management demands for electronics have surged, posing critical challenges for thermal interface materials (TIMs), including insufficient thermal conductivity, excessive interfacial thermal resistance, and phase-change material leakage. To address these, this study designed a boron nitride (BN)-reinforced composite phase-change hydrogel: Polyvinyl alcohol (PVA)/sodium alginate (SA)/BN/OP44. Thermal conduction pathways were built based on a 3D PVA/SA network via gradient BN filling, and OP44 was encapsulated within a PVA/SA cross-linked network, addressing the trade-off between heat transfer, storage, and stability. Results show the optimized composite with 14 BN mass fraction (wt%) BN (PS-O-B4) achieves a thermal conductivity of 1.16 W/(m·K) (346% enhancement over pure OP44), low thermal resistance of 27.63 (°C·cm2)/W, and mass retention >96.5% after 8 thermal cycles. DSC confirms a melting range (39.1–40 °C) matching chip conditions, with latent heat retention >97.5%. Thermal simulation shows the material delays temperature rise via phase-change and enables steady dissipation via the BN network. This work provides a novel paradigm for designing TIMs with high conduction, low resistance, and stability, advancing practical dynamic thermal management. The material demonstrates commercialization potential for high-power 5G devices.
随着高频5G通信技术的快速发展,电子产品的热管理需求激增,对热界面材料(TIMs)提出了严峻的挑战,包括导热系数不足、界面热阻过大、相变材料泄漏等。为了解决这些问题,本研究设计了一种氮化硼(BN)增强复合相变水凝胶:聚乙烯醇(PVA)/海藻酸钠(SA)/BN/OP44。通过梯度BN填充建立了基于3D PVA/SA网络的热传导途径,并将OP44封装在PVA/SA交联网络中,解决了传热、存储和稳定性之间的权衡。结果表明,经过8次热循环后,BN质量分数(wt%)为14 BN (PS-O-B4)的优化复合材料的导热系数为1.16 W/(m·K),比纯OP44提高了346%,热阻为27.63(°C·cm2)/W,质量保持率为96.5%。DSC证实熔点范围(39.1 ~ 40℃)与芯片条件相匹配,潜热保持率为97.5%。热模拟表明,该材料通过相变延缓了温度的上升,并通过BN网络实现了稳定的耗散。这项工作为设计高导、低阻、稳定的TIMs提供了一个新的范例,促进了实际的动态热管理。该材料展示了高功率5G设备的商业化潜力。