首页/文章/ 详情

发射机指标——EVM

6小时前浏览0

今天我们来讲一下发射机的指标-EVM。

EVM:Error Vector Magnitude,误差向量(包括幅度和相位的矢量)是在一个给定时刻理想无误差基准信号与实际发射信号的向量差,能全面衡量调制信号的幅度误差和相位误差。



 


 

从上述公式可以看出,EVM就是衡量系统线性的一个指标,它近似等于信噪比,对于射频工程师而言,就可以通过分析信噪比来衡量系统的EVM

clear all;

EVM= 0:1:10;

SNR= 20 *1* log10 (EVM * 0.01);

plot(EVM,SNR)

grid on

hold on

xlabel('EVM%')

ylabel('SNR/dB')

title('SNR与EVM的关系')



那么怎么优化系统的EVM?

从线性系统分析,发射机非线性的来源有功放、混频器、频率源、基带;

功放的线性对系统的EVM起到决定性的作用,因此优化功放的线性对提升系统的EVM效果比较显著,具体的方法有回退,DPD,前馈等这个章节就不具体展开;

很多射频工程师可能会忽略频率源与混频器对EVM的影响,对于相位噪声为-115dBm/Hz,对EVM的贡献就已经达到了1%,具体的相位噪声对EVM的换算关系下章展开;

EVM还有一个很大贡献的来源就是基带,目前的通信调制方式都是高峰均比,为了功放的效率通常会对基带信号进行肖峰处理,因此基带对EVM的影响成为了主要来源,射频小伙伴们在EVM优化的时候不要忘记了对基带的同志们提出要求!

好了EVM的介绍今天就结束了,喜欢我就关注我吧,一起学习,一起成长!


来源:射频通信链
非线性通信
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2025-07-28
最近编辑:6小时前
匹诺曹
签名征集中
获赞 6粉丝 39文章 311课程 0
点赞
收藏
作者推荐

射频前端多级滤波器的优化

多段滤波器的优化匹配在多载波实现的方案中,构建开关、滤波器、环形器就可以实现了我们的设计,先调试单个滤波器,保证每个滤波器的匹配最优,然后并联。但是在实际的应用中,调谐发现滤波器变了。为什么驻波插损看起来都好的滤波器,级联之后就变化了?插损变大,驻波变差,单独看又是好的,实在是令人费解。 射频前端设计框图 下图显示了频带8和频带1滤波器的测试图,单独看每个滤波器都是好的,注意到级联以后频带1的滤波器被频带8破坏,但是频带8的滤波器完全不受影响。 滤波器的测试图单独看两个滤波器性能都很好,即使存在滤波器漏电流,也不应该会造成滤波器1的损坏。深层次测试查找原因,测试在开关接到滤波器1的时候,滤波器8的阻抗,发现此时滤波器8并不是开路,而是呈现在短路区,滤波器8以类似于开路短截线的方式影响滤波器1 ,进而改变滤波器1的性能。再看开关接到滤波器8的时候,滤波器1的Smith圆图,几乎完全处于开路状态,完全不影响滤波器8. 滤波器8的Smith圆图滤波器1的Smith圆图找到原因,根据Smith圆图的匹配原则,加入匹配枝节,就可以把阻抗拉到开路区。 实际的方案设计中,不同的滤波器接入同一个节点,他们会相互影响,进而导致滤波器插损大,驻波差,要进行二次匹配,对组合的电路进行调整。有些不经意的设计往往有着非同寻常的作用,跟我一起发现那些射频设计中那些不起眼而关键的设计吧,关注我,一起进步! 来源:射频通信链

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习计划 福利任务
下载APP
联系我们
帮助与反馈