首页/文章/ 详情

ADS仿真应用-微带滤波器自动生成工具

7小时前浏览3

好久没做过微带滤波器仿真,今天需要仿真一个5G的滤波器,突然有点蒙,忘记了自动生成的滤波器怎么实现的  

找了很多资料,都是计算求出奇模特性阻抗和偶模特性阻抗值,其  

最后可得出微带线的宽度w、长度l、间距s。  

我是个懒人,不喜欢基础的计算,加上做系统时间长了,更偏向于一体化的结果。所以我一般都是用ADS的自动生成工具。  

本篇就是一个记录我使用自动化微带滤波器的仿真过程。  

目标:做一个5G n78频段的带通滤波器。  

应用N78与N28 ENDC  

N78:3300-3800M  

N28:708-803M  

对于具体用什么类型的滤波器  

1.平行耦合微带线滤波器  

半波长平等耦合微带线带通滤波器是微波集成电路中广为应用的带通滤波器 形式。其结构紧凑、寄生通带的中心频率位于主通带中心频率的倍处、适应频  

率范围较大、适用于宽带滤波器时相对带宽可达20%。其缺点为插损较大‚同时‚谐振器在一个方向依次摆开造成滤波器在一个方向上战胜了较大空间。  

2.发夹性滤波器  

发夹型滤波器是由发夹型谐振器并排排列祸合而成的。和平行祸合带通滤波  

器相比它的结构更为紧凑在电路尺寸较严格的场合发夹型滤波器有较为广  

泛的应用 ‚其信号输入输出方式可采用抽头式和平行祸合式方式。  

3.交指型滤波器  

交指型滤波器是由个平行祸合线谐振器相互交叉组成的结构具有良好的带通滤波器特性。阻带衰减和截止频率都比较大  

4.微带类椭贺函数滤波器  

平行祸合线滤波器、交指型滤波器等到目前为上最多只能实现切比雪夫  

特性获得在带内较平坦的幅频特性但带外抑制特性较差。由于类椭圆函数谐振器是一个方形而不在一个方向展开所以缩小了体积。同时在超导状态因为导体薄膜的无载值很高该种滤波器将在具有较高选择性的同时又具有较低的插损  

根据以上特性发夹型滤波器  

打开ADS的Passive Circuit Design Guide,选择带通滤波器模型DA_SHPFilter1。  

设置滤波器参数  

  

  

得到对应的子电路系统,以及S11和S21参数。  

  

  

如果觉得数据不合理,可以选择继续优化  

在优化的过程中需要注意的一些地方:  

①选择了随机优化的算法,对于优化参数的变化范围需要控制好,范围大了则精度不够,范围小了则可能舍弃更优解;  

②活用Tuning,由于实际的工业生产中必然存在着尺寸上误差,而微波电路又是典型的利用结构实现功能,故在对优化参数进行取值的时候要注意,若其值进行上下较小的波动,我们仍要求性能符合要求。  

祝好!  


来源:射频通信链
电路ADS控制
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2025-07-28
最近编辑:7小时前
匹诺曹
签名征集中
获赞 6粉丝 39文章 311课程 0
点赞
收藏
作者推荐

扇形微带短截线型滤波器的设计

扇形短截线扇形微带线是一种有用的微带线,他在微波电路中的很多地方用来实现阻抗匹配和组成RF电路,比如放大器、滤波器和混合器。扇形微带短截线(radial line stub)的结构如图1所示。微带扇形短截线输入电抗可以由下列关系式给出:在式(3)中,Ji(x)和Ni(x)是第一类和第二类贝塞尔函数,α扇形微带短截线的角度,εre是等效介质常数,λ0为自由空间波长,r1和r2是扇形微带线的内、外半径,h,ω分别是介质基片的厚度和微带宽度,ωe是扇形短截线等效为微带线的宽度。微带短截线的特性分析由于Richards变换具有周期性特征,此类滤波器的频率响应不可能具有很宽的频带。扇形短截线与传统直形短截线相比,能在输入阻抗相同的情况下实现较宽频带的优点。利用扇形短截线的这一主要特性来对传统直形短截线滤波器进行优化研究。首先通过理论分析可知,在输入阻抗相同的条件下能将原窄带特性改善为宽带特性,然后利用ADS分别对两段连接在主传输线上的输入阻抗相同的λ0/4直形短截线和角度为π/2扇形短截线进行特性对比,经过理论计算得出这两种短截线在ADS的仿真结构以及参数如图2所示,经过ADS仿真后得出两短截线特性的对比结果,如图3,图4所示。如图2所示,扇形短截线的物理长度约为传统直形短截线物理长度的1/2,由此可知,在相同技术要求下用扇形短截线设计的电路所占的基板面积要比传统直形短截线设计的电路所占的基板面积小。如图3所示,扇形短截线的反射系数S11与传统直形短截线的反射系数S11的曲线相比更加平滑;在图4中,在中心频率处扇形短截线的透射系数S21<-50 dB,而传统直形短截线的透射系数S21>-40 dB,尤其是扇形短截线的频带约为1.6 GHz,而传统直形短截线约为0.8 GHz。由此可知,扇形短截线的衰减程度更深,频宽相对较宽的特性。然后,用HFSS再对这两种短截线进行三维电磁仿真分析。根据图2中的参数在HFSS中建立电路仿真模型并进行仿真分析,得出特性对比曲线即S参数对比曲线,如图5,图6所示。通过HFSS仿真验证结果即图5和图6中的S参数对比曲线可知,扇形短截线确实要比传统直形短截线具有更好的特性。但在图5、图6中,在中心频率1.6 Hz处,传统直形短截线的偏移稍大一些,可推测这是由于传统直形短截线与主传输线的连接处尺寸较宽所产生的不连续性影响较大;而扇形短截线在连接处尺寸较窄所产生的不连续影响较小,所以偏移相对较小。从图5、图6中可知,扇形短截线的特性曲线较平滑,工作特性好。扇形短截线型滤波器的设计扇形短截线型滤波器的设计和传统微带滤波器一样,都是可以应用频率变换从集总元件LC梯型低通原型出发的,不同的是这里对滤波器的设计是用扇形短截线作为电抗元件即电容应用于滤波器的设计中。扇形短截线滤波器是由扇形短截线在主传输线上相间排列构成的,在设计中为了简化设计过程,将图1所示的内半径r1近似为零,并联在主传输线上的扇形短截线的参数可由式(3)~(5)得知,扇形短截线等效于并联电容,其单位扇形线及等效电路结构图如图7所示。扇形短截线之间的传输线为λ0/4传输线,而且把他作为二端口网络处理。根据网络分析理论,这个二端口网络可以用π型电路来等效。同理,所有的扇形短截线和主传输线都可以用同样的方法来等效,而且采用对称的电路结构,这样可得到滤波器集总参数的等效电路,将电路中的相邻同类元件合并,最后将集总元件通过公式转换为最终目标电路结构。根据设计要求选择滤波器的阶数为n,通过文献查得低通原型的元件值gm,m=0,1,…,n。滤波器原型元件与微带带阻滤波器元件之间的关系如下:其中:ZA,ZB为终端阻抗,Zj |j=1~n为开路并联短截线的阻抗,Zj,j+1 |j=1~n-1为联接传输线的阻抗。根据上述理论再结合式(1)~式(5),最终可以设计出滤波器结构电路图如图8所示。在此滤波器结构电路中,为了使各短截线阻抗值近似相同,中间短截线用两个短截线并联构成,这样可以减小连接处尺寸,从而减小连接处不连续性的影响。 滤波器设计实例设计一个带阻滤波器:输入阻抗为50Ω,阻带中心频率为1.6 GHz的,相对带宽为60%,并且选用3阶通带纹波为0.1 dB的Chebyshev滤波器,其低通原型参数为:g0=g4=1,g1=g3=1.031 5,g2=1.147 4。印制板材料的介电常数为9.6,厚度为1.252 2 mm。用式(9)求得∧=0.509 53。将上述参数值代入式(6)~式(8)求得各段微带线的参数值,然后,用上述参数求得的各段短截线阻抗值代人式(3)~式(5)求得对应的扇形短截线的半径长度和厚度,其参数值为:ω1=ω4=0.052 549 mm,ω2=ω3=0.021 755 mmr1=r4=10.855 04 mm,r2=r3=10.868 2 mm,l=17.733 8 mm。根据上二述计算出的参数在ADS中分别对扇形短截线和传统直形短截线滤波器进行仿真测试,其仿真结果曲线如图9所示。根据上述参数在HFSS中建立电路仿真模型并进行仿真分析,其电路结构如图10所示,经过HFSS仿真后得出传输特性即S参数如图1l所示。由图9中对比曲线可知,扇形短截线滤波器在中心频率处S21《-50 dB,比传统直形短截线滤波器的衰减程度大,扇形短截线滤波器的频带约为1.2 GHz,而传统直形短截线滤波器约为0.8 GHz。由此可知,扇形短截线滤波器具有较宽的频带等特性。由图11可知,用HFSS仿真的结果也证实了上述结论的正确性。图ll中的曲线在中心频率偏移了0.1 GHz,偏移的原因可能是边缘电容以及连接处的不连续性所产生的,但阻带频宽与理论计算没有很大的偏差,能够基本达到理论要求,而且该带阻滤波器实测结果较为理想。3 结 语通过对扇形短截线滤波器的设计,可以看出他具有如下优点:电路结构简单;具有很好的宽阻带特性和较小的通带波纹;该结构易于实现。理论和设计取得了期望的一致性,对其他结构的滤波器设计都有一定的参考价值。利用ADS和HFSS仿真工具设计微带滤波器,能缩短设计周期,且设计出滤波器性能好,仿真结果能较好地与实际相符。上述滤波器设计方法实用性强,适合工程应用。方案设计/合作/加群/推广:jump-qq来源:射频通信链

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习计划 福利任务
下载APP
联系我们
帮助与反馈