首页/文章/ 详情

双Fabry-Perot共振腔

1天前浏览1


将超表面概念集成到天线设计中引发了一项革命性的突破,在方向性、带宽、辐射方向图、极化和波束整形能力方面取得了前所未有的进步。最近有研究人员提出基于全金属超表面的双Fabry-Perot(FP)共振腔天线阵列,可以大大提高天线的性能。


目录



   
  • 双FP共振腔    
  • FP共振腔的基本原理    
  • 参考资料    
 
 

 
     



FP

As shown below👇

*双FP共振腔

PEC-PEC腔:由两个金属平行板形成,支持传统的电共振模式。

PMC-PMC腔:可以通过金属针状超表面(metasurface)模拟PMC(理想磁导体)行为,支持磁共振模式。

混合设计通过同时激发电和磁共振,可以显著扩展天线的工作带宽。用金属针超表面构造等效PMC边界,当针的高度与间距满足 λ/4 条件时,表面呈现高阻抗特性,即等效为PMC,从而新增磁共振通道。两个共振峰靠近叠加,拓宽带宽。

 


双腔耦合效应与传统FP天线

两种共振模式叠加,使天线在工作频段范围内实现宽带工作。

避免了传统FPRA的窄带限制,同时保持高增益和低交叉极化。

 





*FP共振腔的基本原理

FP腔通常由两个平行的反射面构成,电磁波在腔内多次反射后形成驻波,从而产生共振效应。在传统设计中,FP腔的边界条件是理想电导体(PEC),其共振频率由腔体间距决定,遵循公式 f0 = nc/2d ,其中n 是模式数,c 是光速,d 是腔体间距。

 


FP共振腔天线(FPRA)利用FP腔的共振效应增强天线的方向性和增益。其典型结构包括:

底部馈电层(如微带线或波导);

中间谐振腔(FP腔);

顶部部分反射面(如金属栅格或超表面)。


FPRA 的主要特点:

高方向性:FP腔的共振使电磁波能量集中辐射,形成窄波束。

带宽受限:传统FPRA的带宽较窄,通常仅支持单一共振模式。



参考文献



   

[1] B. Ferreira Gomes, A. U. Zaman, and J. R. Mejía-Salazar, “All-Metallic-Metasurface-Based Wideband Dual Fabry–Perot Resonance Antenna Array With High Directivity and Polarization Purity,” IEEE Transactions on Antennas and Propagation, vol. 73, no. 6, pp. 3692–3703, Jun. 2025, doi: 10.1109/TAP.2025.3537688.

          




来源:微波工程仿真
ACTANSAMETA
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2025-07-11
最近编辑:1天前
周末--电磁仿真
博士 微波电磁波
获赞 26粉丝 54文章 380课程 0
点赞
收藏
作者推荐

微波工程--数字编码超表面

数字编码超表面的提出将局部几何、本构参数和电磁(EM)响应(例如,相位、振幅和极化)离散化,以便它们可以通过数字序列(例如,“0”和“1”)表示。这一概念打破了传统模拟和数字设备之间的界限,在物理世界和信息世界之间架起了桥梁,并为超表面设计开辟了新的前景。数字编码超表面Asshownbelow👇工作原理数字编码和可编程超表面的一般概念最早是在2014年由Cui等人在下面文章提出的。T.J.Cui,M.Q.Qi,X.Wan,J.ZhaoandQ.Cheng,"Codingmetamaterialsdigitalmetamaterialsandprogrammablemetamaterials",LightSci.Appl.,vol.3,no.10,pp.e218,Oct.2014.对于最简单的二进制(1-b)场景,提出结构包括两种元件的2D排列,其特征是反射相位为0和180°,分别与二进制数字“0”和“1”相关联。基于亚波长金属片状晶胞的可能超表面实现如图所示。通过优化贴片边长w,可以在特定工作频率下合成两个相位差为180°的响应。图1(b)显示了编码元件“0”(w=4.8mm)和“1”(w=3.75mm)在7至14GHz范围内的相位响应,相位差由红色虚线表示。理论应用方面介绍半分析建模Wan等人提出了一种适用于半解析处理的编码超表面的近似建模。在二进制情况下,编码模式中的位通常与两个不同的反射相位相关联,尽管也可以考虑幅度和极化。信息论方面信息论中一个典型的场景是多个发射器通过多个通道将信息传输到多个接收器。受到香农信息熵概念的启发,该概念量化了每条信息中携带的信息,崔铁军等人提出了一个类似的度量来量化与编码超表面相关的信息。基于卷积的操作为了将散射模式引导到任意预先设计的方向,可以利用卷积类型的操作。在信号处理中,卷积意味着频谱的变化,即定义散射模式偏移的原理如下:因此,通过将编码模式E(xλ)乘以与e^jxλsinθ0相关的梯度编码序列,可以获得量sinθ0(在角坐标系中)的转向。End在未来一个重要的方向是朝着智能超表面发展,现阶段主要包括两个分支:1)AI驱动的设计和2)传感器集成的可编程平台。下一代智能超表面将展示更先进的传感和识别能力,以主动学习真实场景中的电磁特性并做出适当的响应,并将能够直接在电磁波空间中执行复杂的计算任务。来源:灵境地平线

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习计划 福利任务
下载APP
联系我们
帮助与反馈