首页/文章/ 详情

【UMAT6】中篇-Chaboche非线性随动硬化雅可比矩阵

7天前浏览9

大家好,我是九千CAE。

上一节讲解了 Chaboche 非线性随动硬化本构理论,书接上回,本节我们将介绍雅可比矩阵的获取。


 

Since

 


Then

 


Consider

 


Then the 2nd term is

 


Also consider

 


Then the 3rd term is

 


Substitute the 2nd and 3rd terms back, yielding

 


The termA can be rearranged as a similar as a elastic Jacobian matrix as

 


To derive termB and termC , we have to derive      and      first.

Note that in the previous formula,      

since      is a deviatoric tensor.


This formula gives one relation between      and     , the other relation can be derived from the yield function as

 


Combining above two relation and rearrange, one can obtain

 
 

The termB can be expressed as

 


Because     

 


Substitute back to termB

 


Finally, termC is

 


Substitute termA, B and C back and let

 
 


The right-hand side of the above formula gives the notation for the elasto-plastic Jacobian matrix. To fit the Voigt expressions of stress and strain, we need the 6x6 matrix form as below.

The partA is

 


The partB is 

(Note that the superscription 'def' is omitted since     

 


The partC is

 

来源:九千CAE

非线性UM理论
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2025-07-10
最近编辑:7天前
九千CAE
博士 签名征集中
获赞 185粉丝 331文章 46课程 26
点赞
收藏
作者推荐
未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习计划 福利任务
下载APP
联系我们
帮助与反馈