★ 目录 ★
专题一 | (详情内容点击上方名称查看) 2025年07月12日-07月13日 2025年07月19日-07月20日 在线直播(授课四天) |
专题二 | (详情内容点击上方名称查看) 2025年07月05日-07月06日 2025年07月12日-07月13日 在线直播(授课四天) |
专题三 | (详情内容点击上方名称查看) 2025年07月25日-07月27日 2025年08月02日-08月03日 在线直播(授课五天) |
☆培训对象
材料科学、电力工业、航空航天科学与工程、有机化工、无机化工、建筑科学与工程、自动化技术、工业通用技术、汽车工业、金属学与金属工艺、机械工业、船舶工业等领域的科研人员、工程师、及相关行业从业者、跨领域研究人员。
01
培训讲师
1
水泥基复合材料讲师
由来自全国知名高校教授/博导,国家级青年人才带领团队讲授。长期从事机器学习与智能复合材料与结构的研究与开发,近两年以第一/通讯作者发表SCI论文20余篇,包括多个中科院一区TOP期刊发表高水平论文。发表论文谷歌引用次数超过3000次,h-index为27。团队导师担任省内力学学会理事、SCI期刊Nano Materials Science和Buildings青年编委和Frontiers in Materials客座编辑,以及超过70个SCI期刊的长期审稿人。
2
AI复合材料讲师
讲师来自全国重点大学、国家“985工程”、“211工程”重点高校,计算力学博士,以第一作者于Composites Science and Technology、CMAME、CS等TOP期刊发表论文多篇,授权发明专利3项。
主要研究方向:深度学习加速的FEA、多尺度分析方法、结构逆向设计等。
02
培训大纲
基于AI-有限元融合的复合材料多尺度建模与性能预测前沿技术
目录 | 主要内容 | |
关键理论与软件 二次开发使用方法 | 1. 基础理论: 1.1.复合材料均质化理论(Eshelby方法、代表性体积单元RVE)论文详述 1.2.有限元在复合材料建模中的关键问题(网格划分、周期性边界条件) 1.3.神经网络基础与迁移学习原理(DNN、CNN、Domain Adaptation) 1.4.纤维复合材料的损伤理论(Tsai-Wu准则、Hashin准则) 实践1:软件环境配置与二次开发方法实践 ☆ ABAQUS/Python脚本交互(基于论文中RVE建模案例) ☆ ABAQUS GUI操作与Python脚本自动化建模 ☆ 输出应力-应变场数据的文件格式标准化 ☆ ABAQUS二次开发框架搭建 ☆基于ABAQUS二次开发程序的Hashin/Tsai-Wu失效分析有限元实践 ☆ TexGen软件安装及GUI界面操作介绍、Python脚本参数化方法 ☆ 三维编织/机织纤维复合材料几何模型及网格划分方法 | |
多尺度建模与数据生成方法 | 1. 复合材料多尺度建模与仿真分析方法 1.1.多相复合材料界面(纤维/基质界面)理论机理(Cohesive模型) 1.2.连续纤维复合材料RVE建模(纤维分布算法、周期性边界条件实现) 1.3.参数化设计:纤维体积分数、纤维直径随机性等对性能的影响 1.4.双尺度有限元仿真方法原理及理论(FE2方法) 1.5.直接双尺度有限元仿真方法原理及理论方法(Direct FE2方法) 实践2:大批量仿真分析与数据处理方法 ☆ 考虑界面结合(Cohesive模型)的复合材料分析模型建立 ☆ 基于Python的ABAQUS批量仿真(PyCharm嵌入ABAQUS计算内核) ☆ 基于PowerShell调用Python FEA脚本解决动态内存爆炸问题 ☆ 控制纤维体分比的纤维丝束生成算法(RSE) ☆ 编写脚本生成不同纤维排布的RVE模型 ☆ 输出训练数据集(应变能密度、弹性等效属性等) ☆ ABAQUS实现Direct FE2方法仿真分析(复合材料) | |
深度学习模型构建与训练 | 1. 深度学习模型设计: 1.1.基于多层感知机(DNN)的训练预测网络 1.2.基于卷积神经网络(CNN)的跨尺度特征提取网络(ResNet/DenseNet) 1.3.复合材料的多模态深度学习方法(结构特征提取+材料属性) 1.4.三维结构(多相复合材料/单相多孔材料)的特征处理及预测方法 1.5.物理信息神经网络(PINN):将物理信息融合到深度学习中 1.6.迁移学习策略:预训练模型在新型复合材料中的参数微调 实践3:代码实现与训练 ☆ 深度学习框架PyTorch/TensorFlow模型搭建 ☆ 构建多层感知机(DNN)的训练预测网络 ☆ 数据增强技巧:对有限元数据进行噪声注入与归一化 ☆ 构建二维结构的特征处理及预测网络(CNN—ResNet/DenseNet)+多模态学习预测 ☆ 构建三维结构的特征处理及预测网络(三维卷积神经网络) ☆ 建立物理信息神经网络(PINN)学习预测模型 | |
迁移学习与跨领域应用 | 1. 迁移学习理论深化 1.1.归纳迁移学习与迁移式学习理论深入详解与应用 1.2.归纳迁移学习在跨领域学习预测中的应用 1.3.领域自适应(Domain Adaptation)在材料跨尺度预测中的应用 1.4.案例:碳纤维→玻璃纤维、树脂基质→金属基质的性能预测迁移 实践4:基于预训练模型的迁移学习 ☆ 迁移学习神经网络模型的搭建 ☆ 归纳学习方法:加载预训练模型权重,针对新材料类型进行微调 ☆ 领域自适应:使用领域自适应方法预测未知新材料相关属性 ☆ 使用TensorBoard可视化训练过程与性能对比 实践5:端到端复合材料性能预测系统开发 ☆ 参数化建模→有限元计算→神经网络预测→结果可视化全流程实现 |
☆部分案例图示:
机器学习在智能水泥基复合材料中的应用与实践
目录 | 主要内容 | |
机器学习基础模型与复合材料研究融合 | 1. 机器学习在复合材料中的应用概述 2. 机器学习用于复合材料研究的流程 3. 复合材料数据收集与数据预处理 实例:数据的收集和预处理 4. 复合材料机器学习特征工程与选择 实例:以纳米材料增强复合材料为例,讨论特征选择、特征工程在提高模型性能中的作用 5. 线性回归用于复合材料研究 实例:线性回归和多项式回归在处理复合材料数据中的应用 6. 多项式回归用于复合材料研究 实例:多项式回归在处理复合材料数据中的非线性关系时的应用 7. 决策树用于复合材料研究 实例:决策树回归在预测水泥基复合材料强度中的应用 | |
复合材料研究中应用集成学习与支持向量模型 | 1. 随机森林用于复合材料研究 实例:随机森林在预测复合材料性能中的应用 2. Boosting算法用于复合材料研究 实例:Catboost在预测复合材料强度中的应用 3. XGBoost和LightGBM用于复合材料研究 (1) XGBoost (2) LightGBM (3) 模型解释性技术 实例:XGBoost和LightGBM在水泥基复合材料性能预测中的应用,模型比较 4. 支持向量机 (SVM) 用于复合材料研究 (1) 核函数 (2) SVM用于回归(SVR) 实例:SVR在预测复合材料的力学性能中的应用 5. 模型调参与优化工具包 (1) 网格搜索、随机搜索的原理与应用 (2) 工具包Optuna 实例:超参数调整方法,模型调参与优化工具包的应用 6. 机器学习模型评估 (1) 回归模型中的评估指标(MSE, R2, MAE等) (2) 交叉验证技术 实例:比较不同模型的性能并选择最佳模型 | |
复合材料研究中应用神经网络 | 1. 神经网络基础 (1) 激活函数 (2) 前向传播过程 (3) 损失函数 实例:手动实现前向传播 2. 神经网络反向传播与优化 (1) 梯度下降法原理 (2) 反向传播算法 (3) 随机梯度下降(SGD) 实例:实现梯度下降算法 3. 复合材料研究中的多层感知机(MLP) (1) MLP架构设计 (2) MLP的训练过程 (3) MLP在回归和分类中的应用 实例:构建简单的MLP解决复合材料中的回归问题 4. PINNs (1) PINN基本原理 (2) 弹簧振动正问题中的PINNs (3) 弹簧振动逆问题中的PINNs 实例:使用PyTorch构建PINNs 5. GAN (1) GAN基本原理 (2) 针对表格数据的GAN (3) 增强数据的评估指标 实例:构建GAN生成水泥基复合材料数据 6. 可解释性机器学习方法-SHAP (1) SHAP理论基础 (2) 计算和解释SHAP值 实例:复合材料中应用SHAP进行模型解释和特征理解 | |
论文复现机器学习综合应用以及SCI文章写作 | 论文实例解读与复现:选择两篇应用机器学习研究水泥基复合材料的SCI论文 1. Comparison of traditional and automated machine learning approaches in predicting the compressive strength of graphene oxide/cement composites. Construction and Building Materials, 2023, 394: 132179. 2. Machine learning aided uncertainty analysis on nonlinear vibration of cracked FG-GNPRC dielectric beam. Structures, 2023, 58: 105456. Ø 论文中使用的复合材料数据集介绍 Ø 论文中的复合材料特征选择与数据预处理方法 Ø 论文中使用的模型结构与构建 Ø 机器学习研究复合材料的超参数调整 Ø 复合材料研究中机器学习模型性能评估 Ø 复合材料机器学习研究结果可视化 | |
课程总结与未来展望 Ø 课程重点回顾 Ø 机器学习在复合材料中的未来发展方向 Ø 如何继续学习和深入研究 Ø Q&A环节 |
☆部分案例图示:
03
培训特色
水泥基复合材料专题
1、跨学科前沿融合:聚焦材料科学中的实际痛点(如强度预测、性能优化),通过算法驱动研究创新,为学员提供交叉学科研究的系统性方法论。
2、全流程实战导向:以“数据→模型→应用→论文”为主线,覆盖复合材料研究的全流程
数据层面:从数据采集、预处理到特征工程,结合纳米材料增强案例详解数据优化策略;
模型层面:从基础回归模型(线性/多项式回归)到高级技术(集成学习、神经网络、PINNs、GAN),通过真实数据集(如水泥基复合材料力学性能)对比不同模型的优劣;
应用层面:结合PyTorch、Optuna等工具实现模型构建、调参与优化,并通过SHAP解释模型决策逻辑,提升结果可信度;
成果转化:复现两篇顶刊SCI论文,解析实验设计、超参数调整与可视化方法。
3、技术深度与广度:涵盖经典机器学习(SVM、随机森林)、自动化调参(XGBoost、LightGBM)、深度学习(MLP、GAN)、物理信息神经网络(PINNs)等多元技术;针对复合材料特性,如非线性力学关系、小样本数据,设计专项解决方案。
4、工具链与可解释性并重:引入工业级工具(PyTorch、Optuna)实现高效建模与超参数优化;强调模型透明性,通过SHAP值分析特征贡献度,助力结果的可解释性与学术说服力。
5、科研赋能与成果落地:提供顶刊论文复现模板,拆解实验设计、图表制作与写作逻辑;探讨机器学习在复合材料中的未来趋势,引导学员规划长期研究方向。
AI复合材料专题
1、多尺度建模技术融合:不仅涵盖了复合材料从微观到宏观的多尺度建模理论,还特别强调了有限元方法与神经网络建模的融合,提供了全面的视角来理解建模中的多尺度问题。
2、工业级科研工具链实战:以ABAQUS二次开发为核心,集成PyCharm调试、PowerShell任务调度、TensorBoard可视化,构建接近工业场景的自动化仿真-学习流水线。
3、技术深度与广度:从复合材料均质化理论和有限元建模开始,到更高级的神经网络建模、深度学习和迁移学习,逐步深入,确保学员能够掌握不同复杂度的技术。
4、“物理+数据”双引擎驱动:突破纯数据驱动模型的“黑箱”局限,将Hashin准则、周期性边界条件等物理规则嵌入神经网络(如PINN),提升模型可解释性与外推能力。
5、端到端系统交付能力培养:最终实践环节封装“参数化建模→仿真→预测”流程为独立系统,输出GUI界面或API接口,衔接学术成果与工业落地。
来源:有限元先生