首页/文章/ 详情

3D-IC 设计之寄生抽取和静态时序分析

1天前浏览2

本文作者:张倩忆,沈龙

Cadence 公司 DSG Product Engineering Group


 


先进工艺制程使得设计工程师们一次又一次突破了芯片性能、功耗和面积的极限。为了可以继续速度更快、功能更强、造价更省的追求,摩尔人依然在孜孜不倦地寻找新的方法。3D-IC 即是其中之一:通过封装和互联技术的更新使得多个裸片(die)可以集成在同一片晶片(chip)中,这样片内的高速互联就替代了之前片外的低速互联。这一新维度为未来芯片的性能提升创造了无限可能,从今年 5 月起我们(查看文末往期内容)已经连续 5 期详细揭秘了 Cadence 系统平台如何为 3D 设计者提供帮助。现在我们来看一下这其中涉及的新的互联方式和工艺集成对寄生参数和时序分析又带来了哪些挑战,以及我们如何先前一步为芯片签核人员做好准备。


 


  • uBUMP 和 TSV 的寄生如何抽取

  • 中介层之间出现的耦合电容亟待考虑吗

  • 静态时序分析的集成与扩容

  • 如何应对 PVT 分析 corner 的爆炸式增长

  • 设计案例

   

01

uBUMP 和 TSV 的寄生如何抽取


首先介绍下什么是 uBUMP 和 TSV。

uBUMP 通常是用来连接上下两个裸片堆叠的,需要用 IPF(Inter-Process-File)文件来定义。通孔(VIA)是定义在两个相邻绕线层之间的。TSV(Through Silicon Via)是指定义在 3D-IC 工艺中连接背面第一层金属和正面第一层的通孔。还有一种 Long TSV 是指连接背面第一层金属和正面第一层以上某一层金属之间的通孔。

Quantus 在寄生参数抽取时对于 uBUMP 和 TSV 有两种计算方式。一种是通常在 ICT 文件中用模型语句来描述,另一种是通过定义一个额外的 TSV 模型文件(.subckt)在整体寄生参数抽取时进行标注。目前 Quantus 对于用 TSV 模型语句的方式可以支持电阻和对地电容的抽取,这些电阻电容值和普通的寄生参数抽取一样是写在输出网表中。


02

中介层之间出现的耦合电容亟待考虑吗


基本的 3D-IC 的寄生参数抽取包括 TSV、uBUMP 还有芯片背面金属层的抽取。然而随着工艺的进步,两个 DIE 之间的距离更靠近,所以两者绕线之间的电容就变得不容忽视了。Quantus 目前可以支持 IDX 电容抽取了。IDX 是 3D-IC 中两个 DIE 之间形成的新的耦合电容,利用两个 DIE 之间的耦合电容可以做更精准的系统级静态时序分析,这两个 DIE 可以是相同或者不同制造工艺。IDX 寄生抽取支持 Cadence Integrated 3D-IC 中的 iHDB 输入,并且可以把输出结果存入 iHDB 以便后续的 Tempus 进行时序分析。


 


03

静态时序分析的集成与扩容


静态时序分析(STA)一直是芯片签核工程师关注的重点。Integrity 3D-IC 平台自然是不能少了 STA 的功能集成。除了命令行和脚本的输入,平台的用户界面也添加了用户交互界面的支持,比如一直很受 Tempus 和 Innovus 使用者喜爱的 Global Timing Debug (GTD),该功能可以协助分析关键路径的时序违例原因。

如下图所示,STA 产生报告之后,GTD 为设计工程师显示 Path Histogram、Path Layout、Hierarchy、Slack Calculation 和其他许多很有价值的分析报告和视图。  


     
     

◁ 左右滑动查看更多 ▷

芯片的复杂度可以无限增加了,设计规模自然也随之上升。当 flatten 的全芯片分析时间过长或者内存用量过大时,就需要考虑通过抽取简化模型进行层次化时序分析。在 Tempus 里这一解决方案叫做边界模型(Boundary Mode)。如下图左所示这个模型去除了 block 内部 reg->reg 的 path 仅保留 block 对外互联以及相关联的部分,包括:

  • 所有的 input ports 的 fan-out 逻辑和 output  ports fan-in 逻辑

  • 所有对保留逻辑有 SI 影响的电路

  • 所有保留逻辑的边负荷电路(side load)

通过对每个 die 做 Boundary Model 的抽取,整体网表的缩减率可以达到 90%,而 setup slack 的平均差异控制在 0.1ps,99.73% 的路径在 2.7ps 以内。


     
     

◁ 左右滑动查看更多 ▷


04

如何应对PVT分析corner的爆炸式增长


从性能的角度上来看,3D-IC 一个很强大的功能就是支持了本地的、高速的 Die 之间的同步通讯。然而这一新功能也给静态时序签核(STA)增加了大量的分析 corner。现今的设计只有一个 Die 在做全局 STA,每条时序路径都是在一组给定的 PVT 参数下做分析。在 3D-IC 设计中,多个 Die 是同时工作在不同的 PVT 参数下。设想当你有一条同步的时序路径从 Bottom Die 开始出发(startpoint),经过 Middle Die,最后抵达 Top Die(endpoint),这条 path 就会经历三种不同的 PVT 条件,好像我们从北半球旅行到南半球会穿越不同地理环境和气候。


 


因为 3D 设计允许每个 Die 可以有独自的 PVT corner,这样 STA 签核就必须涵盖所有的可能出现的组合情况。以上图里三个 Die 的典型设计为例,如果 Die1 和 Die2 的 process corner 都是 12 个,Die3 是 6 个;三个 Die 的 Voltage corner 和 Temperature corner 都只考虑 2 个相同的,那么总共需要分析的 corner 数量就已经达到(12x12x6)x 2 x 2 = 3456 个。


 


针对这个 3D 设计中 corner 爆炸式增长的挑战,Tempus 开发了一个新的 Rapid Automated Inter-Die(RAID)技术,可以在分析这些 feed through paths 时巧妙地大量缩减 corner 数量,同时保证计算精度。下图是一个非常简化的 3 层 Die 的例子,假设每层都只有 3 个 corner(N=K=M=3),那么全组合需要分析的 corner 数量就是 27 个(N*K*M)。Feed through 的部分通过 represent delay 和 adjustment 替换,K 最大就可以 reduce 到 1,这样在这个 case 里 corner 就减小到了 9 个,corner 的缩减率是 3X。对于中间 Die 超过 10 个 corner 的设计,reduction ratio 将会超过 10X;对于更多层堆叠的 3D 设计,缩减率就更为可观!


 


对于没有 feed through 的一般 path 分析,corner 增长的数量不会如此庞大,但是仍然会对机器的需求量随着设计的复杂度增加不断攀升。Cadence 另一现有的强大并行分析引擎 concurrent multi-mode multi-corner(C-MMMC)就为此提供了第二个维度的解决方案。该功能通过高效复用多个 corner 的相同的 DB 数据,储存有效减轻计算量的中间数据和提高 CPU 的并行使用率,从而大幅降低了对机器和硬盘的使用需求。对于相同 delay corner 不同 constraint corner的 STA 分析,运行时间和内存使用的增加量都只有 20% 左右,相对于串行分析 CMMMC 的 runtime reduction 通常可以达到 4-5X。


 


05

设计案例


最后让我们看一个 5nm 的实际 3D 设计案例,该设计包含一个 logic die 有 6 个 process corner,和 2 个 SRAM 的 die 分别有 12 个 process corner。如果使用传统的 STA 分析,即使是在 CMMMC 模式下完成所有 864(6*12*12)个 process corner 的组合分析也需要 8-9 天(多线程使用 32 个 CPU,@2.6GHZ 主频)。使用 Boundary Model 技术之后时间可以极大缩短至 15 个小时;继续使用 RAID 技术之后,签核 corner 的个数降低至 144 个,完成相同的时序分析仅仅使用了惊人的 4 小时 27 分钟!加上产生 Boundary Model 所需要的最长时间(6 小时 50 分钟),速度提升仍然接近 40X!


 


Cadence Integrity 3D-IC 平台是业界首个全面的整体 3D-IC 设计规划,实现和分析平台。该平台以全系统的视角,集成了 Cadence 公司的多个强势分析工具和优化引擎,对芯片的性能、功耗、散热和面积做了全面的评估和优化。其中寄生参数提取工具 Quantus 准确计算 3D 通孔和中阶层之间的电阻电容效应;静态时序分析工具 Tempus 极大地提高了多工艺组合 STA 分析的效率,把之前需要以周记的分析速度减少以小时计算。强大准确的算力为高带宽高数据吞吐量的机器学习、高性能存储设备、云端计算等 3D-IC 应用保驾护航。

来源:Cadence楷登
ACTSystem寄生参数电路航空汽车电子UG消费电子芯片UM爆炸Cadence控制
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2025-10-02
最近编辑:1天前
Cadence楷登
签名征集中
获赞 0粉丝 86文章 395课程 0
点赞
收藏
作者推荐

SPICE 仿真遇到前所未有的挑战!

本文作者:曾义、李晴Cadence 公司 SPICE 仿真器自诞生以来,几乎成为了所有集成电路设计人员都采用的必不可少的工具。但随着工艺发展和电路设计复杂度的提升,我们面对的仿真需求越来越多,要处理的电路设计规模越来越大,SPICE 仿真工具因而遇到了前所未有的挑战:仿真时间太长?仿真的容量太大,传统的工具都处理不了?工艺角数目太多,不知道如何实现全面准确的验证?Spectre 仿真平台可以有效解决这些问题。Spectre 仿真平台是一套完整的模拟/射频、存储器(Memory)和混合信号的验证解决方案,是与 Cadence 其他流程集 合提供行业领先功能的仿真器最强小队。 Cadence® Spectre® Simulation Platform 包含多个仿真器,设计者能够轻而易举地在电路级、模块级以及系统级仿真任务之间无缝切换。该平台基于统一的语法分析、器件模型、硬件描述语言行为建模、输入输出数据格式等技术,仿真结果都保持一致且准确。除此之外,Spectre 仿真技术还很好地集成到其他 Cadence 技术平台,包括:Xcelium™ Logic SimulationLiberate™ Trio Characterization SuiteLegato™ Reliability SolutionVirtuoso® ADE Product SuiteVoltus™-XFi Custom Power Integrity SolutionVirtuoso RF Solution为您提供业界最全面的跨领域仿真解决方案。 首先,给您分享几个典型应用案例:案例一某知名存储器(Memory)设计制造厂商,在仿真与验证的过程中发现,针对一个 60 万个晶体管的设计,Spectre X 的精度与 APS 相差 0.21% 左右,Spectre FX 的提升速度更是达到了惊人的 72 倍。后来在拥有 5 百多万晶体管的全芯片验证过程中,Spectre FX 的仿真结果在精准度和速度上的表现都相当让人满意。尤其在功耗验证的情况下,速度提升在 Base mode 的 10 倍左右,占用的存储空间更少了。案例二某知名模拟设计厂商,在仿真与验证的过程中发现,针对一个 99 万个电路节点、140 万寄生电容以及 370 万寄生电路的后仿设计,Spectre X RF 的精度与 Spectre APS RF 相差 0.1% 左右,但 Spectre X RF 的速度约是 APS RF 的 8 倍,且使用的内存从之前的 1200G 降低到约 800G。案例三一个包含 29 万个晶体管,110 万个寄生电阻和 160 万个寄生电容的先进工艺混合信号设计,工作在 8 Ghz 左右,在后仿时,以前的方案要跑 33 小时;后来采用了 Spectre FX,直接加速至少 2.4 倍。鉴于这个成功的尝试,用户又在一个以前方案不能跑出正确结果的案例上使用 Spectre FX。这个工作在 8 Ghz 拥有 16 万晶体管,1900 万寄生电阻和 84 万寄生电容的先进工艺下的 PLL,结果仅仅是 Spectre FX Base Mode(最高精度)就达到了同上的效果。基于前面两个案例的成功尝试,他们再接再厉,在一个先进工艺下拥有 3.1 万个晶体管的混合电路上测试,工作频率达到 32Ghz,以前方案的结果是完全不被接受和不精准的。这次采用了 AMS + Spectre FX 的方式,数字逻辑符合预期,眼图清晰可见,同时 Spectre FX 在 AMS 的环境里简单易用,仿真的时间节省了不少。另外,他们发现快速模式与 Base Mode 的混合设置,是在其他的仿真器里不具备的独特特点。+ + + + + + + + + + + Spectre 技术方案 多种高效仿真引擎助力攻坚克难和 Cadence 其他技术平台很好的集成多种高效仿真引擎助力攻坚克难Spectre X作为最新一代的 Spectre 技术,Spectre X 不以牺牲模拟仿真精度为代价来换取性能提升,且支持多线程多进程技术。更重要的是,与 Spectre APS 相比,Spectre® X 仿真器在使用更多 CPU 核基础上可以实现更高的 CPU 利用率。特有的 Xscale 专利技术带来了以下仿真速度和容量上的突破:▶ 新的数值分析技术可求解更大的方程矩阵,且速度提升 2-3 倍,同时不会损失仿真精度。用于先进 MOS 器件和互连的建模方法经过优化,性能更是提升了额外 1.5 倍。▶ 数据处理方式的改进促进了对于内存的有效使用,因而可处理最大可达 5 倍于之前容量的后仿电路网表。▶ 将仿真任务分配到多个 CPU 上并利用现代云计算架构实现可扩展的大规模并行仿真,可实现性能 1.5-2 倍的提升。 Spectre AMS Designer混合信号设计领域波涛汹涌,设计人员可能面临的风险比以前增大了 10 倍。有些挑战是显而易见的,如漫长的模拟仿真运行时间、大量模拟设计控制序列、模式和控制位的验证,以及复杂电源管理方案的测试验证。 面对这些挑战,Spectre AMS 将模拟和数字领域的所有可用技术结合起来,让设计人员可以为客户开发适用于该设计技术的特定流程。且无论需求定义是什么,这个方案都能满足需求。▶ 使用可靠的 Spectre 模拟仿真和 Xcelium 数字仿真技术确保设计质量。▶ 支持 Virtuoso ADE Product Suite 中的模拟设计流程使用模式和 Xcelium 环境中的数字验证使用模式。▶ 支持更高级别的抽象和加速仿真能实现快速周转时间,全部可视的原理图和更加高效的 AMS debug 功能,更有效地发现设计问题。新的 Cadence MS 调试流程 Spectre FX新一代 FastSPICE 技术的优势:▶ 从底层架构全新打造的 FastSPICE 仿真引擎,与其他 FastSPICE 仿真器相比,可扩展创新型 FastSPICE 架构为客户提供了高达 3 倍的性能提升,同时具备同等的所需精度。▶ 提供高达 32 个内核的多线程可扩展性和同级最佳的使用模式,兼顾可以预测的精度与速度。▶ 适用于所有的 FastSPICE 应用,并与现有的 Spectre/SPICE 和 ADE 流程无缝集成。 Spectre X RF为 RFIC 电路提供准确快速的仿真结果,包括具有周期性稳态分析(PSS)、小信号和噪声分析,以及谐波平衡(HB)分析功能,可在不损失精度的情况下最大限度地提高性能。借助 Spectre X 架构,HB 分析可以分布到单台服务器或多台服务器上的多个 CPU 核心,更快地完成仿真任务。 Spectre EMIR Solution利用 Cadence Voltus™-XFi 定制功耗完整性解决方案提供专用的晶体管级的电迁移和 IR 压降(EM-IR)分析,提供一站式 EMIR 分析方法,让电路设计工程师专注且高效地分析 EMIR。原生内置到 Spectre 的 EM/IR 和 Cadence 其他技术平台很好的集成Spectre Integration▶ Spectre API 与 Liberate 集成,吞吐量比命令行使用模式提高 2-3 倍。▶ Spectre 仿真平台支持通过器件和电路检查(Checks&Asserts),并在 ADE 中提供高效的仿真数据分析方式。▶ Spectre CMI(通用模型接口)提供了最先进的内置器件模型,客户可以预编译模型和链接到 CMI,也可以使用编译的 VerilogA 创建自定义模型。▶ Spectre Circuit Simulator 可以对 Mis match 以及 Process Variation 进行蒙特卡罗分析,通过将 Spectre 集成到 ADE 中,实现高级统计分析。▶ Spectre X Simulator 添加了 Legato 可靠性分析的解决方案,来进行先进的老化分析、电热分析和模拟缺陷分析。全面的定制仿真解决方案 最后,让我们再来听听业界大佬的声音。“ MediaTek公司模拟设计及技术总经理 Ching San Wu 先生:“我们使用Spectre X仿真器仿真了先进的 5G 设计。即使把后仿寄生抽取产生的大量寄生参数考虑在内,所需的仿真时间缩短了 7 倍。这一验证流程将为 MediaTek 的客户和消费者带来更高的收益和可靠性。”” “ SK hynix, Inc. 计算机辅助工程主管 Do Chang-ho 先生:“我们的 DRAM 设计需要在多个工艺角进行多次高精度芯片级 FastSPICE 仿真,以确保它们的时序、功耗和其他属性满足严苛的规范要求,同时要按时向 PC 和移动计算市场交付我们的产品。通过与 Cadence 合作,Spectre FX FastSPICE 仿真器已通过认证并部署在生产中,用于 PC 和移动 DRAM 验证,并且将扩展到 HBM 和图形 DRAM。Spectre FX 仿真器实现了设计方法的突破并显著提高了生产效率。”” “ 瑞萨电子设计自动化部门,公共 R&D 分部,广泛技术解决方案事业部总监,Nobuhiko Goto 先生:“模拟仿真验证对汽车和工业领域的先进 SoC 设计越来越重要。我们是最早采用 Spectre X 仿真器的用户之一,并亲身体验了它带来的 10 倍性能提升,且同时保持 SPICE 精度。我们期待在实际产品设计中使用 Spectre X 仿真器,满足设计对性能和容量提升的要求。”” Cadence Spectre 平台在超过 25 年的时间里一直是业内领先的模拟/射频集成电路、存储器(Memory)和混合信号的验证仿真解决方案。我们始终致力于为客户提供可久经验证的准确度和性能优势。我们不断完善 Spectre 产品组合,为客户带来高精确和快速的仿真解决方案。Cadence Spectre 仿真平台加速 SoC 设计验证,助您实现更快的产品上市目标。来源:Cadence楷登

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习计划 福利任务
下载APP
联系我们
帮助与反馈