首页/文章/ 详情

技术博客 I 一文速通 PCB layout 中的信号完整性基础知识

1月前浏览51
本文要点:
  • 掌握信号完整性基础知识

  • 实现良好信号完整性的 PCB layout 技术

  • 有助于提高信号完整性的 layout 工具和功能



诚信 (integrity) 的本质特征之一是始终如一、不妥协、值得信赖。在现代电子设备和系统中,高速电信号的质量也得讲究“诚信”,不过其定义是 integrity 的另一涵义——完整性。如果信号质量下降或信号完整性表现不佳,就可能无法达到预期目的。这会导致设计的电子产品出现各种问题,如间歇性故障,甚至彻底无法运行。


为避免此类中断和故障,需要根据特定的设计标准对 PCB 进行布局和布线,创建最有利于传输高速信号的环境。这涉及 PCB 设计的方方面面,包括所使用的元件、原始电路板的制造以及元件的摆放和连接方式。要成功设计高速电子产品,设计人员必须了解信号完整性的基础知识。


 


1

信号完整性不佳可能导致的问题


干扰可能对电子设备运行产生巨大影响。比如说,坐飞机时手机需要关机、收音机受到干扰会传出静电噪声;一些老式电脑会产生大量的电磁干扰,最终只能退出市场。信号完整性不佳导致的大多数问题更加隐蔽——性能可能偶尔出现故障,数据可能丢失,甚至设备都可能无法运行。这些问题的根源通常都可以追溯到信号完整性问题。


电子设备中的信号速度越来越快,更容易受到各种干扰,包括阻抗失配导致的信号反射、地弹和串扰。如果不专门针对这些问题去设计电路板的布局,信号恶化会愈演愈烈,直至电路板无法按预期正常工作。此外,电路板的设计还必须确保不会给自身电路或附近的电子设备带来信号完整性问题。在针对这些问题下手设计之前,首先要了解一些关键的信号完整性基本知识。



2

必备的信号完整性基本知识


导致电路板上的信号质量下降有多种类别的影响因素。以下四种值得关注。




01

电磁干扰(EMI)

如果在电路板上布设高频信号时未加谨慎,就会产生 EMI 辐射。不仅走线的长度和配置会造成问题,走线和过孔残桩也会起到天线的作用。EMI 的另一个来源是信号返回路径,该路径最好位于相邻的参考平面上。如果返回路径受阻,信号在寻找返回信号源的路径时就会辐射出更多的噪声。



02

串扰(Crosstalk)

相距太近的高速走线可能会意外耦合,导致一个信号压倒另一个信号。这种串扰会导致受害者信号模仿攻击者信号的特性,无法完成其预期的作用。不仅并排布线会产生串扰,在电路板相邻的层上并行布线也会产生串扰。这种串扰被称为“宽边耦合”,这也是大多数电路板设计在相邻层上交替进行水平和垂直布线的原因。


 

要成功设计电路板,掌握信号完整性基本知识至关重要




03

同步开关噪声(地弹)

电路板上有众多元件在高电平和低电平状态之间切换,切换到低电平状态时,电压电平可能无法完全恢复到接地电位。如果低电平状态的电压电平 反弹过高,信号的低电平状态可能会被误认为是高电平状态。这种情况大量且同时地发生的话,可能会导致错误切换或双重切换,干扰电路的运行。



04

阻抗失配

敏感的高速传输线路的均匀性发生变化会导致信号反射,从而破坏信号的完整性。在没有妥善关注阻抗值的情况下布线,不同电路板区域的阻抗值会根据各种条件发生变化。要正确布设受控阻抗的敏感走线,需要合理设计层叠、走线宽度和间隙。


明确了信号完整性的主要问题后,可以通过哪些 PCB 设计方法来解决呢?


3

增强信号完整性的 PCB 设计方法


1. PCB 层叠设置和器件布局


PCB 的信号完整性问题通常是由于信号返回路径不当。返回路径不能有障碍物,而且需要位于相邻的参考平面层上,以获得更好的信号完整性。要实现这种配置,需要在电路板层叠中设置专用的层,用于微带线或带状线配置的敏感高速布线和相邻参考平面。微带线配置由表面走线和下面的单个平面组成,而带状线走线则在内部布线,夹在两个参考平面之间。


 

微带线和带状线层配置对信号完整性的影响


相邻参考平面和清晰的返回路径对所有信号都有益处,不过对于必须以受控阻抗布线的敏感信号来说,这一点变得更加重要。要确定用于受控阻抗布线的走线宽度,就需要计算介质厚度、介电常数以及走线厚度。若改变电路板层叠或用于 PCB 制造的材料,上述计算结果就会改变,因此设计人员必须在 layout 开始前确定电路板的 layout 配置。除此之外,受控阻抗走线采用哪种微带线或带状线配置进行布线,也会影响计算结果(如上图所示)。


电路板层层叠配置确定后,下一步就是在电路板上摆放器件。许多高速电路由多个网络组成,这些网络从一个器件的驱动引脚开始,穿过其他器件,在最后一个器件的负载引脚处终止。如此形成的回路被称为信号路径。为了保持信号的完整性,必须按照原理图中的详细说明,依次摆放部件,以便引脚之间实现最短的点对点连接。其他器件,如处理器和内存芯片,需要有足够大的间距,以满足所有布线拓扑结构的需要,但距离又要足够近,以实现短连接。



器件摆放注意事项


  1. 在摆放高速电路时,应遵循原理图的逻辑流程。

  2. 在处理器和存储器件的每个电源引脚附近摆放旁路电容器。

  3. 为逃逸布线和总线布线留出空间。

  4. 遵守装配商的可制造性设计 (DFM) 规则。

  5. 确保运行时会发热的器件能够有效散热。


在电路板上摆放好器件后,下一步就是布线。


2. 电路板布线和参考平面


此时就可以开始布线。要保证信号完整性良好,走线与器件的位置密切相关。例如,逃逸布线必须精心设计,确保所有信号妥当连接,以及相关器件(如旁路电容)尽可能靠近引脚。针对引脚数量众多的 BGA,许多设计需要依靠盘中孔 (via-in-pad) 来确保连接简短,并为布线留出更多空间。


 

电路板上的差分对布线


妥当完成器件布局后,就可以进行高速电路布线了。



布线准则


  1. 信号路径走线要简短、直接。

  2. 敏感信号应尽可能布设在内部层上、紧邻参考平面旁边或位于参考平面之间。

  3. 时钟线和其他敏感高速信号应尽可能与其他走线分开。间距应为所用走线宽度的三倍,这条经验法则屡试不爽。

  4. 差分对布线要紧密相邻,不要在过孔等障碍物周围拆散差分对。

  5. 对长度必须匹配的一组网络进行布线时,先从最长的连接开始,然后在其他连接上增加可以调节的绕线,与第一个连接相匹配。

  6. 不要让敏感信号穿过电路的嘈杂区域,如电路板的模拟或电源部分。

  7. 留出足够的空间,以便在需要时采用菊花链等特定布线拓扑结构。

  8. 尽可能减少过孔的使用,避免过孔长度和电感带来更多信号完整性问题。


除了布线,还需要设计电路板的电源分配网络 (PDN)。干净的 PDN 对电源完整性至关重要,同时也有助于确保信号完整性。另外,高速传输线应避免穿过参考平面上的阻塞区域,否则电路板会产生更多电磁干扰,因为信号会四处游荡,试图找到返回信号源的清晰路径。阻塞区域包括分割平面、电路板切口和密集的过孔区域,如下图所示:


 

密集的过孔区域可能会堵塞参考平面上的信号返回路径


设计出有良好信号完整性的电路板虽然复杂,但  CAD 工具可以助力设计人员提高效率,更好完成。


4

有助于确保信号完整性的 layout 工具


当下的 PCB 设计系统包括许多实用的工具和功能,有助于确保设计具有良好的信号完整性。例如,Cadence Allegro PCB 设计软件提供了一个规则系统,用于为器件、网络、高速网络和电气属性(阻抗、传播延迟等)设置规则。此外,Sigrity Aurora 工具提供设计同步分析(In-design Analysis)功能,可将信号完整性、电源和电磁仿真无缝直接集成到 layout 环境中。


目前,Cadence Allegro PCB 设计软件已进化到最新的 Allegro X 23.1 版本!不仅包含以上全部功能,更与 Cadence Clarity 3D Solver、Celsius Thermal Solver 等电磁分析、热仿真分析工具无缝集成,为 PCB 和系统设计的工程师提供集成了逻辑/物理设计、系统分析和设计数据管理的系统设计平台和新的技术升级!


全新的 EE 控制面板,可进行版图规划和输入分析;集成的 X AI 技术,能自动完成元件放置、电源网络分配和布线;升级更新的 Allegro System Capture、Allegro Pulse 数据管理和云连接等主要产品,能确保您获得迄今为止最强大的 Allegro 性能,将整体设计生产力提高 4 倍。


来源:Cadence楷登
System电源电路信号完整性电子电源完整性芯片材料Cadence控制Sigrity
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2025-10-26
最近编辑:1月前
Cadence楷登
签名征集中
获赞 2粉丝 110文章 635课程 0
点赞
收藏
作者推荐

技术博客 I 224G 系统需要多大的 ASIC 封装尺寸?

随着电子设备越来越先进,集成电路封装尺寸也变得越来越小,但这不仅仅是为了提高引脚密度。较高的引脚密度对于具有许多互连的高级系统非常重要,但在更高级的网络器件中,还有一个重要的原因是要为这些系统中运行的互连器件设定带宽限制。224G 系统和 IP 正在从概念过渡到商业产品,这意味着封装设计需要满足这些系统的带宽要求。封装中的“高带宽”并不是一个新概念,而且封装设计人员知道如何构建可在极高频率下工作的互连。例如,在 MMIC 中,接口能以相对较高的功率提供高频率,即使没有高密度封装也能做到这一点。这些封装并不是新兴事物,它们已经在某些实例中使用了几十年。224G 系统和这些系统的未来一代产品所面临的挑战是,需要实现从直流到极高频率的高带宽。这意味着 BGA 封装、封装基板、封装中介层和内部封装布线的设计必须能在最低阶的模式传播机制下运行。 1高速接口的封装布线方式新一代数据中心架构的正常运行离不开正确的封装,这种封装能够支持基本 (TEM) 模式下的超高频模式传播。根据传输线理论,在传输线设计中,假定相关信号以 TEM 模式传播,这在信道的最低带宽要求下依然适用。这些因素尤其会影响信号在封装中的传播行为:封装底部 BGA bump 之间的间距半导体晶粒上 bump 之间的间距封装内部的布线(即跨层布线)再分布层 (RDL) 中内部走线的尺寸对封装中内部布线的每个部分进行分析,可以发现这些因素在何处收敛,以确定封装的带宽限制。要知道,这些因素中的任何一个都会限制封装的总带宽,从而限制从封装到 PCB 或连接器的频率。 考虑到 224G 信道的带宽限制,应使用焊球间距不超过 0.8 mm 的封装尺寸来支持 56 GHz 宽带信道。这与英特尔公司提供的仿真数据以及利用过渡过孔周围的整体空腔面积得出的基本计算结果相吻合。使用封装底部的焊球排列进行简单计算,可以估算出 TEM 模式的频率限制。计算过程如下——首先,利用 4 焊球 x 3 焊球的方形区域、封装基底材料的介电常数和 0.8 mm 的焊球间距限制,得出半波长截止频率:F =(真空中的光速)/[sqrt(Dk) * 0.8mm * 2 * 2]如果基板材料是 ABF,则 Dk = 3.5,近似截止频率为 F = 50 GHz。这与 802.3 工作组的仿真数据和测试数据中的估计值相似,他们将 0.8 mm 间距封装的截止频率设定为 59 GHz。对于封装内部,可以使用类似的计算方法来确定一阶(TE 或 TM)模式——假设我们在差分对与接地平面之间使用上下各约 40 微米的带状线,在封装的过孔栅栏之间使用 120 微米的带状线。这些带状线的 TEM 截止频率大约为:F =(真空中的光速)/[sqrt(Dk) * 0.12mm * 2]由此得出的结果是 667 GHz。封装内部的实际布线要复杂一些,但这一基本估计值说明了封装设计可以支持的高带宽。在这个简单的例子中,即使带状线与接地平面的距离大一个数量级,也能轻松支持 224G PAM-4 信号。2封装如何达到带宽限制接下来的两节中,我们将详细介绍如何达到上述 TEM 模式传播的频率限制。封装传输线中的 TEM 和非 TEM 模式传输线(特别是用于封装布线的带状线)的尺寸非常小,可以实现非常高的 TEM 模式带宽截止频率。下图是这些传输线的典型布线方式;其中包括在过孔栅栏之间布线(通常是差分布线),以设置线路阻抗并在附近线路之间提供屏蔽。 确定封装中使用的带状线带宽截止频率的参数。在用于封装的带状线中,决定单根带状线中 TEM 模式带宽截止频率的因素同样适用于差分带状线。将差分带状线用于速度极高的 224G 通道,是为了使封装不会从封装基板边缘产生强烈辐射。因为 W 的尺寸较小(约 0.1 mm),TEM 带宽限制非常高,所以传统封装在高频率下也能很好地工作。焊球间距造成的 TEM 限制在封装中,焊球间距也会产生类似的带宽限制效应。这是因为高级处理器和 FPGA 高数据速率接口的封装会用接地引脚将信号引脚包围起来。这些引脚在封装底部形成了一个同轴差分对。典型的引脚排列如下图所示,标红的引脚是与 PCB 的接地连接。 典型的封装焊球排列。封装底部的每个信号引脚都是差分对的一部分。信号引脚周围距离最近的接地引脚负责确定 TEM 模式截止频率,因为这些信号焊球周围的区域看起来就像一个矩形封闭空腔,所以对于较小的空腔,其最低谐振模式的截止频率通常更低。这是因为过孔的作用类似于过孔栅栏,它们有两种功能:将信号功率限制在过孔周围,以减少串扰影响连接封装和 PCB 的差分过孔的阻抗一旦信号带宽超过 TEM 截止频率,部分信号将以高阶模式(TE 或 TM 模式)传播,该模式将在不同封装区域的导体周围呈现出一定的波形。首先,在跨层区域,每根铜线周围都可能存在 TEM 模式,这种模式会阻碍信号在 56 GHz 以上的带宽中进行宽带传播。在封装底部的焊球区域,可能会存在一种 TEM 模式,位于进入 PCB 焊盘的成对焊球周围。对于在 224G 下使用差分对的现代 ASIC 而言,这两种情况都不太理想。3如何评估封装带宽上述计算只是一种粗略的计算方法,将带状线或封装 bump 对近似为矩形波导。但由于过孔/焊球间距和中心导体的影响,封装布线实际上并不是以这种方式工作的。确定信号行为和信号导体周围电磁场的唯一方法是使用电磁场求解器。使用场求解器计算出的数据,为 224G 封装的每个部分建立仿真模型。这些仿真工具的基本流程如下:使用电磁场计算结果来确定封装互连 (bump-to-bump) 各部分的 S 参数将 S 参数回归到网络各部分的线性网络中可以修改从 S 参数数据中提取的线性网络,以优化信道模型可将其他因素(如均衡和 PCB 上的传输线)添加到模型中可以通过观察强度模式(通常是二维平面上的彩色强度图)来观察从 TEM 行为到非 TEM 行为的过渡。下图是一个矩形介质波导的简单示例,其中电磁波进入了两种不同的模式(TE 和 TEM)。 总之,在设计互连几何结构时,封装设计人员不仅要考虑低损耗,还要考虑高带宽。目前,限制信道带宽的主要因素是封装上的焊球间距。这意味着按照摩尔定律,如果带宽再增加一倍,封装尺寸就可能达到传统封装制造技术的极限。在考量封装设计时,应该对整个互连过程进行仿真,从封装内的 bump-to-bump 开始。封装是确保器件正常运行的最后一步。如果您的设计团队需要了解封装设计与涉及 PCB 和连接器的互连之间的相互作用,Cadence Allegro X Advanced Package Designer(Allegro X APD)为集成电路封装提供了先进的设计和分析工具,可以设计和仿真 224G PAM-4 系统,用于实现高效的引线键合设计技术、约束感知基板互连设计以及详细的互连提取、建模和信号完整性/供电分析,同时集成了用于热分析的多物理场求解器,助力设计人员有效验证在散热方面要求严苛的芯片和封装设计。来源:Cadence楷登

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习计划 福利任务
下载APP
联系我们
帮助与反馈