首页/文章/ 详情

爆炸力学(mechanics of explosion)前沿研究进展

15小时前浏览8

文一:

 

基于水容器的圆柱形防爆容器的防爆性能评价

摘要:

使用具有特定几何形状的液体材料可以提高受限结构的防爆性能。这种方法很有前景,因为散装水具有多种爆炸缓解机制,几乎不增加额外的质量。在本研究中,通过实验和美国模拟,研究了一种使用充水容器来减少圆柱形爆炸安全壳(CECV)的峰值和永久变形的方法。进行了几次爆炸实验,以评估空容器和具有多种厚度和高度的散装水在动态变形和燃烧抑制方面的爆炸缓解效果。实验结果表明,具有较大厚度和较小高度的散装水具有更好的保护性能,与没有缓解剂相比,其永久变形减少了80.1%。使用LS-DYNA建立了数值模型,并通过实验测量的变形时程曲线进行了验证。通过数值模拟分析了爆炸过程中的能量转换过程,结果表明,水吸收了本应传递给钢壳的大部分爆轰能量,证明水的动量提取是CECV内部爆炸的一种重要缓解机制。另一个重要的缓解机制是水的遮蔽效应,它改变了作用在钢壳上的爆炸载荷的空间分布,尤其是对于厚度较大、高度较小的水容器。

 

图:带充水容器的圆柱形爆炸安全壳示意图(四分之三型号)。

 

图:(a) 集装箱设置的照片。(b) 四个容器主体和盖子的照片。

 

图:(a) 实验装置示意图(前视图)。(b) 实验装置示意图(侧视图)。(c) 实验装置的照片。

 

图:使用不同缓解措施的CECV之间的峰值和永久变形的比较。图中的峰值变形是指第一个峰值变形。

 

图:不同缓解措施的火焰持续时间比较。纵轴使用指数坐标来显示差异较大的值。

 

图:LDS记录的S1、S2和S4的变形时程曲线。

 

图:后燃现象的比较(a)在没有缓解剂的情况下,(b)由高速摄像机拍摄的装满水的容器。火焰尺寸被描述为CECV外径(213mm)的倍数。

 

图:CECV进水的数值模拟模型。(a) 3D模型的1/8。(b) 具有变形量计D1的数值模型(X-Y平面)的仰视图。(c) 带有压力表P1-P13的数值模型(X-Z平面)的侧视图。

 

图:无缓解措施的CECV的实验结果和数值结果的比较。

 

图:(a) 传递到具有不同几何尺寸的散装水中的动能的比较。(b) 从XZ平面给出了各相的压力等值线(0.02ms、0.07ms和0.17ms)和材料位置(0.27ms)的数值模拟。压力等值线的范围从0到30兆帕。散装水的轮廓用虚线标出。

 

图:转移到不同尺寸和质量的散装水中的峰值动能的比较。

文二:

 

水下爆炸作用下充水双层板中冲击波传播和水空化的研究

摘要:

充水双层船体是水下战舰的普遍设计。研究水下冲击波在此类结构中的传播对于理解其抗震性至关重要。本文的目的是研究水下冲击波和水空化在充水双层板中的传播。为了实现这一目标,本文将等熵单流体模型与牛顿第二定律相结合,建立了欧拉可压缩流体模型。通过验证试验验证了数值求解器的准确性。分析了冲击波的反射和传输特性、板的动态响应以及外部和间隙水中的空化现象。还考察了外板和内板支撑弹簧以及外板的面积密度对冲击波传播和空化演化的影响。研究结果表明,间隙水中的透射波受外板面积密度和支撑弹簧的影响。较厚的外板可以降低传输波的峰值,而较硬的支撑弹簧可以降低传输脉冲。另一方面,如果外板是独立的或软支撑的,则对内板的响应影响最小。此外,在软支撑的外板的情况下,水空化由内板的支撑弹簧决定,并且空化最初在靠近内板的间隙水中形成,然后向外部水扩展。当外板的支撑弹簧是刚性的时,它显著减少了外部水中空化的发生,而间隙水中的空化仍然由内板的支撑簧决定。这些研究结果对分析典型双壳潜艇的抗冲击性能具有一定的参考价值。

 

图:充水双板模型示意图。

 

图:一维情况下水固界面的图解外推技术。

 

图:充水双板模型数值求解器的框架图。

 

图:(a)充水双板模型(案例2)和(b)单板模型(实例14)之间水中动压和空化的时间和空间分布的比较。

 

图:(a)问题I(水下弹性支撑刚性板模型)和(b)问题II(弹性支撑空气背板模型)的示意图、参考系、边界条件和荷载情况。

文三:

 

动损伤花岗岩浸水后的静态压缩行为及强度削弱机制

摘要:

在充填采矿中,围岩受到间歇性开采和爆破的动态破坏。回填后,回填土的泌水渗入围岩,使围岩处于水岩耦合环境中。为了研究这种情况下围岩的力学性能,制备了两种类型的花岗岩试样,即冲击损伤(ID)、冲击损伤和浸水(IDWS)试样。首次应用改进的分离式霍普金森压杆(SHPB)系统进行了不同冲击次数和围压应力的动态试验,制备了ID试样。随后,通过对一半数量的ID试样进行浸水试验来制备IDWS试样。最后,对ID和IDWS试样进行了静态单轴压缩试验。试验结果表明,ID和IDWS试样的峰值强度随围压的增加而增加,并随冲击次数的增加先增加后减小。IDWS试件的总强度削弱因子由冲击强度削弱因子和水致强度削弱因子以及这两个因素的耦合效应组成。冲击载荷增加了IDWS试样内部微裂纹和孔隙的数量,导致水与微裂纹和孔之间的接触面积更大。电子显微镜扫描结果表明,与ID试样相比,水在IDWS试样中引发了更多的拉伸裂纹。这表现为从宏观剪切破坏模式向宏观拉伸破坏模式的转变,并进一步降低了IDWS试样的峰值强度。

 

图:考虑下切充填采矿过程的围岩静态力学特性测量。

 

图:花岗岩的XRD结果和矿物成分。

 

图:(a) HS-YS4A声学参数测试仪,(b)真空饱和器,(c)和INSTON-1346电液伺服通用测试装置。

 

图:(a) 示意图和(b)SHPB测试系统的物理图。

 

图:σID和σIDWS随(a)围压和(b)冲击次数的变化。

 

图:在不同围压和冲击次数下处理的ID和IDWS试样的宏观失效模式。

 

图:不同围压下ID试样断裂面的典型SEM图像:(a)5 MPa、(b)10 MPa和(c)15 MPa。

文四:

 

不同耦合介质下预应力类岩石试件的爆破损伤研究

摘要:

炸药与井壁之间的耦合介质对岩石爆破性能有很大影响。本研究使用两种剪切增稠液(玉米淀粉悬浮液(CSS)和二氧化硅悬浮液(SDS))和水作为偶联介质。在0至7.5MPa的单轴静应力和2.5MPa间隔的耦合爆破载荷下,对水泥砂浆试件进行了爆破试验。运用分形理论分析了爆破后三维重建试件的损伤程度、裂纹扩展和分形特征。实验结果表明,与使用CSS的试样相比,使用SDS的试样表现出损伤减少,然后随着静应力的增加而增加,呈现出相反的趋势。使用水的试样显示出中等的结果。此外,还进行了数值模拟,以了解爆炸荷载作用下耦合介质向岩石的应力传递。耦合介质的变粘性特性导致爆炸载荷传播和衰减的发散,直接影响试样的损伤。在爆破荷载作用下,具有较强剪切增稠作用的CSS起到了有益的缓冲作用,降低了爆破荷载的强度,最大限度地减少了试件的损伤。另一方面,与水相比,剪切增稠作用较弱的SDS表现出更好的应力波传播能力。这反映在SDS施加的最大压力更高,以及压力、最大剪切应力和沿井壁的合成速度分布更均匀。该研究还强调了通过改变爆点位置来调整爆炸应力波分布的潜力,并强调了CSS和SDS作为钻孔中堵塞材料的优势。

 

图:试样制备:(a)当前爆破试验中使用的试样,(b)试样尺寸和单轴加载示意图,(c)装药和堵塞配置,以及(d)自制药筒。

 

图:(a)玉米淀粉颗粒和(b)碳化硅颗粒的扫描电子显微镜(SEM)图像。

 

图:STF的粘度作为剪切应变速率的函数:(a)典型STF的流变行为,以及(b)CSS和SDS中的不连续剪切增稠。

 

图:测试系统:(a)测试系统概述,(b)防爆装置,(c)高精度压力传感器(量程:20吨)。

 

图:自由加速冲击实验配置。

 

图:悬架冲击的视觉特征:(a)实验结果,(b)数值模拟结果(有效塑性应变),以及(c)表面凹陷的局部放大。

 

图:计算模型的配置和钻孔附近的局部网格。

 

图:爆炸压力在试样中的衰减。

 

图:爆破引起的裂缝演变。

 

图:不同耦合介质在爆炸荷载作用下的力学响应。

 

图:耦合介质在径向(X轴方向)上的应力和速度衰减。

文五:

 

单个水滴层的爆炸缓解机制和在受限几何结构中使用多层来提高爆炸缓解效果

摘要:

考虑对流传热和准稳态阻力,数值研究了水滴层的爆炸减缓机理。模拟了一维冲击波在冲击管中的传播,导致水滴和空气之间的动量和能量传递。对流传热吸收了部分能量,从而直接缓解了冲击波。尽管准稳态阻力传递的能量比对流换热传递的能量少,但它表现出更大的爆炸缓解作用。因此,使用特征值并描述水滴层进行了参数研究,以检查准稳定阻力中涉及的爆炸缓解机制,以及能量吸收效应。已经确定,每次冲击波到达空气/水滴界面时,准稳定阻力将波分为透射波和反射波。由于一维冲击波有助于携带部分能量,因此分裂减少了入射冲击波携带的能量,从而减轻了冲击波的影响。最后,将多层结构与单层结构的防爆效果进行了比较。结果表明,增加层数可以通过多次划分冲击波来协同提高爆破缓解效果。

 

图:水滴(a)单层和(b)多层的初始条件(单位:m)。

 

图:案例4中通过准稳态阻力和对流传热传递能量的时间历程。

 

图:这种情况下压力梯度的X–t图。

 

图:控制体积(CV)示意图,用于计算出射冲击波传输的能量。


来源:STEM与计算机方法
LS-DYNA断裂燃烧通用电子制药声学裂纹理论自动驾驶爆炸材料数字孪生控制人工智能
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2025-11-01
最近编辑:15小时前
江野
博士 等春风得意,等时间嘉许。
获赞 56粉丝 83文章 153课程 0
点赞
收藏
作者推荐

颗粒材料(particulate materials)之计算力学专题分享

文一: 多相流动的光滑粒子流体动力学方法研究综述摘要: 光滑粒子流体动力学 (s moothed particle hydrodynamics, SPH) 具有粒子方法的无网格和全拉格朗日特征,适用于具有界面大变形、不连续性和多物理场的多相流的高精度模拟。SPH 方法模拟多相流已有大量报道, 具体的实现方式也大不相同。本文首先阐述了采用 SPH 方法模拟流体的基本控制方程, 以及求解过程中需要考虑的流体压力求解、表面张力、固体边界等问题。整理和总结了基于 SPH 方法进行多相流模拟的主要实现方式:(1) 双流体模型的拉格朗日求解器: 两相离散为两组独立 SPH 粒子, 并用显式相间作用耦合两相; (2) 多相SPH 方法: SPH 方法对多相流模拟的自然延伸, 相间作用由 SPH 参数隐式描述; (3) SPH 与其他离散方法的耦合: 差异较大的两相各自采用不同离散方法, 发挥不同拉格朗日方法的优点; (4) SPH 和基于网格方法的耦合:网格方法处理简单的单相流动主体, 获得精度和效率间的平衡。另外, 还在模拟参数物理化等方面论述了与 SPH方法模拟多相流相关的一些改进和修正方法, 并在最后讨论和建议了提高多相流 SPH 模拟效率和精度的措施。 图:分子在界面上的相互作用 图:躺滴示意 图:边界属性定义示意文二: 冲击载荷下颗粒材料临边界区域的波动行为及变形特征分析摘要:研究颗粒材料中的波传播问题在超材料制造方面有重要意义, 如波传导超材料边界的设计需考虑应力波的反射和吸收等问题。本文从一维颗粒链中的波传播行为出发, 根据距边界不同位置处颗粒能够得到的最大动能的不同, 给出了临边界区域的定义。然后分析了多组二维颗粒样本在冲击载荷作用下应力波的传播行为,主要考虑了不同边界形状及不同颗粒排列方式对应力波在临边界区域内传播行为的影响。研究表明, 临边界区颗粒排列方式主要影响边界附近颗粒的相对位置和局部孔隙率; 经边界反射后的应力波直接以边界形状在临边界区内传播, 该结论在边界情况越复杂 (高局部孔隙率, 颗粒无序随机排列) 时越准确; 在临边界区域外 (即材料中心区域), 波前形状主要由波速决定。弧形边界对波反射的汇聚作用和临边界区域内颗粒的排列方式所引起的弥散作用是两个竞争因素, 共同决定临边界区域内波的反射过程。最后分析了临边界区域内颗粒力链网络在反射前后的变化. 该研究将为超材料设计提供借鉴。 图:颗粒速度随加载时间的变化 (线性接触模型) 图:计算模型 图:波前形状随时间演化 θ = 0 图:随机排列样本中波前演化图. 上: 单粒径, 下: 均匀分布多粒径 图:均匀分布多粒径随机排列样本波前形状图 图:应力波反射前后临边界区颗粒动能分布文三: 颗粒介质固--流态转变的理论分析及实验研究摘要:颗粒介质由大量离散的颗粒聚集而成,因而与传统固体和流体不同,运动过程中的颗粒介质中可能同时存在多种流态及其相互间复杂的转换过程。颗粒介质弹性失稳机理、不可恢复应变量化是研究颗粒介质固态和流态及固--流态转变的关键。在前期建立的双颗粒温度热力学 (two-granular-temperature, TGT) 理论基础上,确定了颗粒介质的弹性稳定性条件,建立了不可恢复应变流动法则,搭建了描述颗粒固态--液态及其相互转化的简单模型。颗粒堆积体坍塌过程是典型的颗粒介质固态和流态及其转变过程,因此本文首先开展了 25 167 个陶颗粒堆积体坍塌过程的实验研究,并使用基于 TGT 理论的物质点方法和离散元方法对物理实验进行了模拟。结果表明,模型数值结果与物理实验在颗粒堆坍塌过程中的形态、速度分布等细节上吻合很好,同时也发现了现阶段所使用的物质点方法和 TGT 理论的不足。初步说明 TGT 理论可以实现颗粒介质固态和流态,以及状态转变的描述。 图:弹性失稳和 Drucker--Prager 屈服的对比 图:颗粒介质应变增量及应力的分解 图:计算流程 图:陶颗粒的初始堆积形态和压强分布 图:陶颗粒堆积体坍塌过程中的形态演化实验照片 (a) 和 DEM 和 MPM 模拟得到的沙堆坍塌过程速率场 (b),(c) 和 MPM 模拟的失稳区域 (d) 的演化 图:MPM 模拟得到的最终堆积时的密度分布文四: 基于多介质、多尺度离散元方法的冰载荷数值冰水池摘要:极地船舶与海洋工程结构冰载荷的确定是其结构抗冰设计、冰区安全运行和结构完整性管理的重要研究内容。当前快速发展的高性能计算技术和多介质、多尺度数值方法为准确、高效地计算结构冰载荷提供了有效的途径, 其中以离散元方法为代表的数值方法取得了出色的研究成果。为此, 本文针对目前极地船舶与海洋工程结构对冰载荷及力学响应的工程需求, 同时考虑国内外对海冰、工程结构与流体相互耦合的多介质、多尺度数值方法研究现状, 对极地船舶与海洋工程数值冰水池的概念、框架、开发技术以及基于离散元方法的软件实现与工程应用进行了论述。数值冰水池在船舶与海洋工程结构冰载荷确定方面具有可靠性、经济性、快速性、扩展性和情景化等显著优势。本文工作借鉴数值水池的研究思路, 以典型船舶和海洋平台结构冰载荷及结构力学响应的离散元计算为例, 探讨了数值冰水池研究的可行性和工程应用前景, 阐述其与理论分析、现场测量和模型试验研究相结合的必要性。以上研究有益于中国在极地船舶与海洋工程领域形成具有独立知识产权的数值计算分析平台, 对中国极地海洋强国的战略实施具有很好的启发和指导意义。 图:数值冰水池的基本框架 图:北极海冰的冰晶细观结构 图:采用球体离散元方法构造的不同海冰类型 图:海冰离散元方法中的不同单元形态 图:不同数值方法模拟的冰–结构相互作用 图:采用 DEM–FEM 方法模拟的锥体海洋平台结构冰激振动 图:船舶在碎冰区及平整冰区中航行的离散元模拟 图:平整冰与锥体海洋平台上部、中部和下部作用时的离散元模拟三维再现 图:数值冰水池中船与平整冰相互作用模拟 图:数值冰水池中船与碎冰相互作用模拟文五: 基于深度学习和细观力学的颗粒材料本构关系研究摘要:颗粒材料的本构关系对岩土工程等众多领域至关重要. 不同于传统的唯象本构理论, 本文基于机器学习模型探索了一种细观力学理论指导下的数据驱动型颗粒材料本构关系预测方法。根据 Vogit 均质化假设, 建立了小应变条件下颗粒材料应力−应变解析关系, 此关系唯一地确定了一组与颗粒材料本构行为相关的细观组构变量。这些变量与反应颗粒材料宏观性质的主应力和主应变信息通过一系列离散元三轴压缩数值试验获得。考虑到细观组构变量为内变量, 不能直接作为本构模型的输入。本文基于有向图方法将颗粒材料微观结构信息隐式地包含在应力−应变的预测当中, 并采用门控循环单元 (GRU) 循环神经网络作为基础深度学习模型描述有向图中结点之间的映射关系。通过将有向图从目标节点沿源节点展开, 整个应力−应变预测模型可由两个神经网络分别训练并组装而成。将训练后的深度学习模型在全新的数据集上进行测试, 结果表明该训练策略能有效捕捉到颗粒材料在常规三轴任意加卸载, 等中主应力系数 b 的真三轴加载, 和等平均有效应力 p 的真三轴加卸载等复杂多轴加载工况下的应力−应变响应关系, 模型具有良好的内插和外推预测能力。考虑到深度学习模型捕捉颗粒材料力学响应的能力及其开放式学习的特点, 充分结合数据驱动方法和理论本构模型可能是颗粒材料本构研究的一个重要方向。 图:基于深度学习的本构模型示意图 图:人工神经网络的训练过程 图:颗粒接触与接触位移 图:基于有向图包含组构演化的本构训练方式 图:两组最佳与最差预测来源:STEM与计算机方法

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习计划 福利任务
下载APP
联系我们
帮助与反馈