首页/文章/ 详情

基于comsol的锂电池叠片电化学耦合热分析

13天前浏览8552

正负集流体上的电流密度分布

本文摘要(由AI生成):

本文介绍了锂离子电池的工作原理和组成部分,包括正极、负极材料和电池内部发生的电化学反应。正极材料多采用锂铁磷酸盐,负极材料多为石墨,新的研究发现钛酸盐可能是更好的负极材料。电池内部状态复杂,涉及扩散与迁移的传质过程,因此无法简单描述。文章重点介绍了一种基于电化学理论的准二维模型(P2D模型),该模型描述了电池内部锂离子固相扩散、电化学反应和电解质中锂离子传质等过程,并遵守电流守恒和物料守恒。文章还介绍了一种采用COMSOL Multiphysics软件对P2D模型进行数值求解的方法,以及一个五层锂电池薄层并联模型的构建和仿真结果。这些模型和仿真结果为锂离子电池的设计和优化提供了重要依据。

      “锂电池”,是一类由锂金属或锂合金为负极材料、使用非水电解质溶液的电池。1912年锂金属电池最早由Gilbert N. Lewis提出并研究。20世纪70年代时,M. S. Whittingham提出并开始研究锂离子电池。由于锂金属的化学特性非常活泼,使得锂金属的加工、保存、使用,对环境要求非常高。随着科学技术的发展,现在锂电池已经成为了主流。锂电池大致可分为两类:锂金属电池和锂离子电池。锂离子电池不含有金属态的锂,并且是可以充电的。可充电电池的第五代产品锂金属电池在1996年诞生,其安全性、比容量、自放电率和性能价格比均优于锂离子电池。由于其自身的高技术要求限制,现在只有少数几个国家的公司在生产这种锂金属电池。

锂金属电池:锂金属电池一般是使用二氧化锰为正极材料、金属锂或其合金金属为负极材料、使用非水电解质溶液的电池。锂电池基本原理 放电反应:Li+MnO2=LiMnO2锂离子电池:锂离子电池一般是使用锂合金金属氧化物为正极材料、石墨为负极材料、使用非水电解质的电池。充电正极上发生的反应为LiCoO2==Li(1-x)CoO2+XLi++Xe-(电子)充电负极上发生的反应为6C+XLi++Xe- = LixC6充电电池总反应:LiCoO2+6C = Li(1-x)CoO2+LixC6正极正极材料:可选的正极材料很多,主流产品多采用锂铁磷酸盐。不同的正极材料��照:

LiCoO23.7 V140 mAh/g
Li2Mn2O44.0 V100 mAh/g
LiFePO43.3 V100 mAh/g
Li2FePO43.6 V115 mAh/g

正极反应:放电时锂离子嵌入,充电时锂离子脱嵌。 充电时:LiFePO4 → Li1-xFePO4 + xLi+ + xe-放电时:Li1-xFePO4 + xLi+ + xe- → LiFePO4。负极负极材料:多采用石墨。新的研究发现钛酸盐可能是更好的材料。负极反应:放电时锂离子脱嵌,充电时锂离子嵌入。充电时:xLi+ + xe- + 6C → LixC6放电时:LixC6→ xLi+ + xe- + 6C

基于电化学理论的电池数学模型

众所周知,锂离子电池内部是依靠电化学反应来释放或存储电能的,然而电化学体系复杂,电池内部还涉及了扩散与迁移的传质过程,这就使得电池内部的状态无法像化工设计那样进行描述。目前应用最为广泛的是由Doyle等提出的准二维模型(P2D),该模型的原理如下图所示:

该模型内存在两个维度:正负极颗粒内部的半径方向与电池极片的厚度方向。Ln,Lsp和Lp分别代表负极活性物质层厚度,隔膜厚度与正极活性物质层厚度,正负极活性材料被看做是分布均匀的小球体,在正负极活性物质层(多孔电极)与隔膜区域内都填充电解质。

该数学模型相比实际过程做出了如下假设:

1) 没有气相生成

2) 电解液内的传输过程符合浓溶液理论

3) 没有副反应发生

4) 电荷转移反应符合Bulter—Volmer方程

5) 电解液中离子物种的传输仅通过扩散与电迁移进行(即不考虑对流)

6) 电极活性物质由大小均匀的球形颗粒组成

7) 电极的体积变化忽略不计,电极具有恒定的孔隙率

8) 忽略双电层电容的影响

9)假设集流体的电导率无限大(实际模型可考虑不添加集流体)

在模型中存在以下过程:

1) 正负极活性材料颗粒内部的锂离子固相扩散过程

该过程是锂离子在固体颗粒内部的传质过程,利用Fick第二定律描述,传质过程进行的快慢与固相扩散系数与固相锂离子浓度梯度有关。

2) 正负极活性材料颗粒表面发生的电化学反应过程

与假设中一致,该过程采用Bulter—Volmer方程描述,该方程是局部电流密度与交换电流密度和过电势之间的关系,其中,交换电流密度与固相锂离子浓度,液相锂离子浓���和电化学反应速率常数有关。注意:该过程非常重要,是连接电解液与电极活性材料之间的桥梁,仅发生在电解液与电极活性材料颗粒的界面(颗粒表面)上。

3) 电解质中锂离子的传质过程(包括扩散与迁移)

该过程不考虑对流传质的情况,利用Nernst—Planck方程描述,扩散过程与浓度梯度与液相扩散系数有关,迁移过程则与液相电势分布和浓度分布。

模型中遵从两个守恒:电流守恒与物料守恒。

电流守恒是指总电流时时刻刻等于固相电流与液相电流之和,物料守恒则是指发生变化前后物质的总量不发生变化。

在有了上述基于电化学理论的P2D模型以后,我们就可以采用数值方法对以上过程进行求解。COMSOL
Multiphysics是一种多物理场耦合软件,通过有限元法对问题进行求解。

(以上内容转载至:https://zhuanlan.zhihu.com/p/28899186,浅谈基于COMSOL的锂离子电池仿真)

本模型为5层锂电池薄层并联模型

每个薄层  由  :  正集流体-正极-隔膜-负极-负集流体   5个基本构件构成,构成一个完整运行电化学充放电的最小薄层。

之后将制作5个薄层, 每个薄层正集流体连接隔壁薄层的负集流体,完成5个薄层的串联。

本模型采用全三维的 锂电池模块进行建模,其核心还是Doyle等提出的P2D模型理论。

薄层的正负集流体与正负极表面的锂离子浓度分布:

薄层的正负极和隔膜中的电解质浓度分布:

正集流体上的电势分布:

隔膜中的电解质电位分布

电池组内阻变化:

监测点位置的锂离子浓度变化

中心线上,电解质浓度分布

温度分布:

Comsol化学新能源
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2019-10-25
最近编辑:13天前
琳泓comsol
本科 | 多物理场仿真... qq:209870384 群1:594368389
获赞 92粉丝 529文章 37课程 7
点赞
收藏
未登录
1条评论
若伊木
签名征集中
1年前
请问有案例分享么?
回复

课程
培训
服务
行家

VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈