首页/文章/ 详情

如何快速优化 EMC滤波器设计?

1天前浏览11
EMC滤波器通常是产品优化方案中的重要组成部分。正确的EMC滤波器拓扑可以节省产品认证和优化电磁兼容性能的时间。此外,优化的EMC 滤波器可以降低产品的成本和体积。


下面列出的技术文章给出了能深入到EMC 滤波器设计领域的视角。我们将在这里说明为什么考虑滤波器元件的寄生参数是重要的,以及如何利用实用仿真方法加快设计进程。

图片

一个产品的成功与否取决于它占领市场的速度。通常,产品认证是一个耗时的环节。如果产品没有通过认证,可能需要重新设计整个产品,因而会增加开发成本;产品延期进入市场也会造成更大的损失。


仔细观察电源的EMC 发射情况,可以发现电磁发射主要有两种形式:传导发射,其频段一般在数kHz 到30MHz 之间;辐射发射,其频段一般在30MHz 到数GHz。降低传导发射通常使用EMC 电源滤波器。EMC 电源滤波器(即开关电源中的滤波器)可能会占整个产品的重要部分。而开发阶段我们总是缺少时间,这成为开发阶段的一种“正常”情况,甚至在产品市场开发之 前,要求完成样品。


由于缺乏时间,提出的解决方案可能不是最优的。这必然导致滤波器的重新设计,产生不必要的成本——依据这种设计方法,产品的材料成本将高达整个产品价格的 15%。滤波器设计中经常使用的技术,是“试凑”的方法,也就是不停的更换滤波器元件,如电容和电感,将它们焊接在一起,直到测量的干扰在电磁兼容标准限 制内。使用这种方案,设计者通常也无法了解改变这些参数之后会有什么影响。


使用这种方法,最后终可获得一个解决方案,但它是我们所需要的最佳方案吗?


干扰类型:共模干扰或差模干扰


要优化EMC 滤波器设计,了解干扰的类型很重要。我们还应该了解在某一频段内哪一种类型的干扰占主导地位。我们可以将传导发射分为差模噪声(DM) 和共模噪声(CM)。差模噪声通常在1MHz 以下的低频段占主导地位。


在开关电源中,差模噪声主要源于直流母线电容的等效串联电阻(ESR)两端的压降。电压降由纹波电流产生(例如有源功率因数校正 器产生的纹波电流)。共模干扰(CM) 通常在1MHz 到100MHz 之间占主导地位。在这个频段范围内,必须要考虑寄生参数和耦合路径。


噪声类型对于EMC 滤波器的设计会产生重大影响。如果获知了干扰类型、寄生参数和耦合路径,我们就可以开始设计滤波器。



电容性的电抗器和电感性的电容器


为了抑制共模干扰和差模干扰,最常见的EMC滤波器结构是LC 型拓扑。正确选择电感非常重要。须考虑的要点之一就是共模电感(共模扼流圈)的频率特性。下面我们来设计一个LC 型滤波器。图1 给出了它的拓扑结构。


图片

图1 LC型滤波器


图中的电容Cy 是Y 形联接的电容。这个电容形成一个返回至共模噪声源( 开关电源的功率开关管对地) 的低阻抗路径。L-CMM 是共模电感,共模电感构建了共模电流的高阻抗回路。Cx 是跨接直流电源线的电容,它与共模电感的漏感一起形成一个差模LC滤波器,用于抑制差模噪声。接下来的设计中,我们总是基于图1 所示的基本原理图来进行讨论。


图2 给出了一个10mH 共模电感的阻抗特性曲线,其中蓝色曲线表示10mH 电感的理想特性,红色则表示实际特性,谐振频率在200kHz。高于这个频率时共模电感就表现为电容特性!我们还可发现,共模电感漏感的谐振频率在 20MHz。如果我们确信1MHz 以上时是共模噪声起主要作用,我们就应该考虑电感的频率特性。


图片

图2 10mH共模电感的阻抗特性


图片

图3 某个2.2nF-Y电容的阻抗特性


现在我们来分析Cy 电容的频率特性。图3 给出了一个2.2nF 瓷片电容的阻抗特性,测量值为红色曲线,理论值为蓝色。由于该电容内部等效电感较小,所以它有非常好的高频特性,其谐振频率在30MHz以上。基于这一特 点,这种电容常被用来减少传导发射。如果想使用这种电容对高达数百MHz 的辐射发射起作用,就要特别关注其频率特性范围。


到目前为止,滤波器的无源元件实际特性都不是最佳的。显然,为了预测滤波器的实用效果,仅仅基于理论值设计是不够的。



基于实测值的EMC 滤波器设计


通常我们进行EMC 滤波器优化的步骤如下:先测量噪声频谱。还要在测量结果中尽力将共模噪声和差模噪声分离。如果我们知道噪声的幅值,并了解电磁兼容标准限值,则可以计算出在一定的频率范围内依从标准所需的衰减量。所需衰减量可以通过以下几种方式计算。


一种方式是用纸和笔的手工计算。我们可以基于电容和电感的理论值来进行计算。但如前面所提到的,这显然不是最好的方式,尤其是在高频范围内尚需考虑滤波器 元件寄生参数的影响时。另一种解决方案是使用spice 仿真软件。通常一个有实际意义的仿真,需要首先推导出单一滤波器元件的等效电路,而这些元件要考虑其所有的寄生参数。基于所需精度和元件数量方面的考虑, 这个方法可能仍是一个耗时的过程。


另一个解决方案是直接用所测量的滤波器元件阻抗特性曲线进行滤波器设计和仿真。正如我们从图2和图3 中所看到的情况,实际阻抗曲线包含了寄生参数的影响。如果我们能够直接使用实际滤波器元件的阻抗曲线进行仿真,将会得到非常精确的滤波器仿真结果。



用这种方法,我们需要什么样的条件呢?


首先我们需要一个矢量网络分析仪(VNA),用来测量滤波器元件在所需频率范围内的阻抗和相位曲线。为了获得本文中展示的仿真,我们使用带有外部阻抗失配器的VNA 对滤波器元件进行了测量。图4给出了这样的测量全频段阻抗布局图。


图片

图4 带外部适配器的矢量网络分析仪(VNA)


测量所需滤波器的所有元件时,我们需要一个软件工具能集成所有的阻抗曲线,来进行滤波器仿真。为此,我们使用内加尔工程公司(Negal Engineering)的EFsyn 软件。


在图5 中可以看到,有一个绘制滤波器原理图的窗口。滤波器元件后(如图5 中的红色标记的电感)没有SPICE 模型。我们直接使用复杂的元件阻抗曲线代之。这种方法还有另一优势,就是它非常快。采用矢量网络分析仪,我们可以为了滤波器设计,去测量在元件货架中的所 有想要使用、或将要使用的元件。在元件库中输入所有的测量值后,我们可直接模拟包含寄生元件参数的新滤波器。


图片

图5 基于阻抗测量值的滤波器设计软件优化



优化:若滤波特性比期望特性差


设计示例:我们来设计一个LC 型共模滤波器。我们知道, 对于传导发射而言, 共模干扰大多在1MHz 到30MHz 之间起主导作用。如果我们在电感和电容实际测量值的基础上,对图1 所示的滤波器仿真,可以得到如下结果:


图片

图6 所示共模滤波器的仿真结果


图6中,蓝色曲线表示共模滤波器基于元件理论值仿真的频率响应,红色曲线则表示共模滤波器基于元件实际测量值仿真的频率响 应。针对图6 的仿真结果,我们可假定电源的输出阻抗为100 欧姆,电源线一侧的阻抗是25 欧姆。在图6(译者注:原文错为图4)中我们看到,共模滤波器的第一个谐振频率在200kHz,这是共模电感谐振频率的影响所致(见图2)。由于,共模滤 波器的第二个谐振频率在20MHz 附近,这是共模电感的漏感所致。在30MHz 附近还有一个因Y 电容Cy 引起的谐振。


在1MHz 的红色光标处显示,滤波器的理论衰减值和实测值的衰减仿真结果,差异超过20dB。这就意味着,所设计滤波器噪声衰减程度比预期的少10 倍考虑其他在实际应用中降低滤波器性能的因素!这个例子表明,实践:来自EMC 实验室的故事。


过去我们碰到过很多类似事情:我们在研制样机的过程中,想寻求一个降低传导发射和辐射发射的解决方案。例如,用15mH 的扼流圈替换10mH 的扼流圈。我们直觉认为15mH 的扼流圈会优于10mH 的扼流圈。但结果却是,干扰在一个频段内降低了,却在另一个频段内被放大了!实际元件的射频特性可能是其诱因。通常,相同体积的共模扼流圈,感值较大的电 感由于线圈匝数的增加而具有更大的寄生电容,因此可能会在较低的频率下发生谐振。利用本文提出的方案,可以充分考虑这种影响,且不需要花费太多的时间去焊 接电路。



结论


要在最短的时间内找到最佳的解决方案,让人最感兴趣的是结构化的设计方法。首先,我们应该知道干扰类型和所关心的频率范围。对于1MHz 以上的干扰,应该考虑滤波器元件的射频特性。考虑了滤波器元件寄生参数和频率特性的仿真,会带来更优化的解决方案,从而缩减开发时间,降低产品价格。


来源:电磁兼容之家
寄生参数电源电路电磁兼容电子焊接理论材料
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2025-06-11
最近编辑:1天前
电磁兼容之家
了解更多电磁兼容相关知识和资讯...
获赞 40粉丝 177文章 2243课程 0
点赞
收藏
作者推荐

10米法电波暗室与3米法暗室的区别!

电波暗室(anechoic chamber)通常对于辐射试验来说,测试场地分为三种,分别是全电波暗室、半电波暗室和开阔场。在这三种测试场地中进行的辐射试验一般都可以认为符合电磁波在自由空间中的传播规律。 全电波暗室 全电波暗室减小了外界电磁波信号对测试信号的干扰,同时电磁波吸波材料可以减小由于墙壁和天花板的反射对测试结果造成的多径效应影响,适用于发射、灵敏度和抗扰度实验。实际使用中,如果屏蔽体的屏蔽效能能够达到80dB~140dB,那么对于外界环境的干扰就可以忽略不计,在全电波暗室中可以模拟自由空间的情况。同其它两种测试场地相比,全电波暗室的地面、天花板和墙壁反射最小、受外界环境干扰最小,并且不受外界天气的影响。它的缺点在于受成本制约,测试空间有限。 半电波暗室 半电波暗室与全电波暗室类似,也是一个经过屏蔽设计的六面盒体,在其内部覆盖有电磁波吸波材料,不同之处在于半电波暗室使用导电地板,不覆盖吸波材料。半电波暗室模拟理想的开阔场情况,即场地具有一个无限大的良好的导电地平面。在半电波暗室中,由于地面没有覆盖吸波材料,因此将产生反射路径,这样接收天线接收到的信号将是直射路径和反射路径信号的总和。 开阔场 开阔场(open area test, OAT)是平坦、空旷、电导率均匀良好、无任何反射物的椭圆形或圆形试验场地,理想的开阔场地面具有良好的导电性,面积无限大,在30MHz~1000MHz之间接收天线接收到的信号将是直射路径和反射路径信号的总和。但在实际应用中,虽然可以获得良好的地面传导率,但是开阔场的面积却是有限的,因此可能造成发射天线与接收天线之间的相位差。在发射测试中,开阔场的使用和半电波暗室相同。 暗室有哪些要求? 暗室是模拟开阔场而进行EMC测量,并提供一个电磁背景干净、场均匀性好的一个测量场地。暗室使用频率一般在9KHz~40GHz左右。我们先来看看3米法电波暗室&10米法电波暗室两个场地都有哪些共同的指标要求; 其中为满足30MHz~40GHz的归一化场地衰减规则,通常暗室需采用铁氧体片和渗碳泡沫角锥或空心角锥复合型又或者加聚氨酯泡沫尖劈吸波材料的宽带吸波材料。 1)尖劈: 吸波材料电磁波吸收效果通常适用于450MHz以上,耐高温、高场强。 2)铁氧体: 铁氧体电磁波吸收效果在1GHz以下,最佳在500MHz以下。 首先我们来看一下两个暗室的区别: 从上表中我们可以看出10米法电波暗室较3米法电波暗室从各个指标上看10米法的一个很明显的优势就是电波暗室结构更“大”,转台直径更“大”,承重能力更“大”,接收天线方向更“智能”,测试静区范围更“大”,在低频时的测试误差更“小”。 下面我们分析一下上述内容对于我们被测试样品的影响在哪里? 1)样品的尺寸:更大结构的电波暗室及转台直径及静区面积(啥是静区?莫急,且看后面分解)可以容纳更大尺寸的样品。 2)样品的重量:更大的转台承重可以承担大吨位的重量级样品。 3)样品的频率:因为测试在远场(啥是远场?莫急,且看后面分解)的条件下其测试的结果才更准确。而近场和远场的区别又和当前测试距离下被测频率所对应的波长有关。所以10米法电波暗室可以准确的测试出更低的工作主频。 所以,现在我们总结一下10米相对3米电波暗室的优点: 1.转台直径大,承重能力强,可以测量更重的样品。样品超过1吨,就请选择10米法电波暗室。 2.静区更大,可以测量外观更大的样品。样品直径超过1.5米,就请选择10米法电波暗室。 3.误差更小,数据更加准确,更具权威。注意:现在很多国家或地区在1GHz以下的辐射骚扰数据已经不接受3m法电波暗室的测试结果。即辐射骚扰的测试频率小于1GHz,就请选择10米法电波暗室。 增加科普1: 静区是暗室性能的最重要指标之一。暗室静区是指电波暗室室内受反射等干扰最弱的区域,也是放置被测设备和接收天线(发射天线)最佳的位置。 暗室静区大小与暗室形状、大小、结构、工作频率、所用吸波材料的电性能、静区所要求静度等有关。一般而言3m法电波暗室最大只能设计2m(2m直径)测试静区,而10米电波暗室可以设计到3m或更大。 2m直径的圆柱内最大只能切1.5m长宽的长方体出来,因此大于1.5m的被测物,会超出静区范围使得测量不准确,必须使用拥有更大的静区的电波暗室进行测试 增加科普2: 近场和远场的影响: 简单粗暴的公式:当测试距离r >λ/2π达到远场测试条件, r <λ/2π 为近场测试条件。 1)对于近场:电场和磁场方向无规律 ①场源是高电压小电流的源近场主要为电场。因为E∝1/r3,H ∝1/r2,随距离增加电场磁场都会变小,但波阻抗变大 ②场源是高电流小电压的源近场主要为磁场。因为E∝1/r2,H ∝1/r3,随距离增加电场磁场都会变小,但波阻抗变小 2)对于远场:电场和磁场方向垂直 E∝1/r , H ∝1/r, 随距离增加电场磁场都会变小,但波阻抗Z=E/H=120π=377(Ω)恒定 其中远场是平面波,比较容易分析和测量,只需测量出电场就能算出磁场,反之亦然。近场比较复杂,电场和磁场没有特定关系,需要分别测量,同时近场场强和1/r3, 1/r2有关,所以位置的微小变化会引起较大的测量误差,测量的重复性差,无法保证测试的一致性。 在可能的场合下,应在远场条件下进行测量,远场区可以由下列条件来确定: 测量距离d选择为: a)d≥λ/2π≈λ/6,在此距离Z=120π=377Ω,电场分量与磁场分量正交。测量误差约3dB d≥λ,测量误差0.5dB EMC实验室配置的主要附属设备 1、暗室的基本设施和设备 1)、屏蔽壳体一间:内部尺寸为20m长×12m宽×8m高,采用美国拼装式工艺建造,保证屏蔽效能的同时,也能保证屏蔽室的坚固耐用,并可以整体搬迁或扩建。 2)、屏蔽门:全开尺寸2.5m*2.5m,手动、电动或气动开启。 3)、波导通风口:8个,尺寸为300mm*300mm。 4)、电气系统:300瓦卤素灯8盏,220V/单相/插座,380V/3相/插座。 5)、电源滤波器:用于EUT、照明、天线塔、转台CCTV 系统的电源滤波器,可增加电话滤波器、网络滤波器等。220VAC/50Hz/单相/2*30A 一台符合MIL-STD-220A 标准,在10MHz~10GHz 频率范围内,插入损失100dB,同时满足UL1283标准。 6)、接头及接头扳:用于连接控制室的设备,装设于高架地板之下。300mm*300mm 接头扳2个,有N型接头,BNC型接头,SMA型接头。 7)、高架地板:最大承重2000kg,地板面装有3个接头扳,高架地板下有两个配线管道,连接接头扳到地面接头扳。 8)、暗室内部四面墙和天花板贴满铁氧体瓦,铁氧体瓦上面再以velcro 叉型粘扣带与魔鬼毡贴微波吸收材料,在镜面菲涅尔区贴上微波吸收材料。地面之吸波材料采用活动式设计,以满足抗干扰(EMS)测试。 9)、CCTV:影像及控制需以光纤传输,配彩色PAL机型。可耐100V/M场强,(DC-18MHz频率范围)6mm固定摄像机及脚架一支。可耐100V/M场强,广角境头,焦距、远近、光圈大小及上下左右可调整的摄像机。摄像机控制器一台,它通过光纤与摄像机连结,控制摄像头上下左右移动,变焦、聚焦。17英寸彩色监示器一套。 2、EMC暗室量测系统 1)、待测物转台 尺寸:直径3米 材质:金属结构、金属台面 载重:2000kg 控制:电驱动、定位及转速由室外遥控 旋转角度:顺时针及逆时针各可旋转360度,定位误差优于±10 转台全是光纤控制,避免引入电磁干扰 2)、天线架(天线升降塔): 材质:FRP 尺寸:高6.3米,垂直调控距离优于1.0-6.0 米万用天线夹具及收线机 控制:控制器以光纤遥控天线架具有气动极向变换位置光纤传输 3)、双通道控制器一台:控制转台和天线架移动 4)、EMI测试软件一套 暗室吸波材料通常是用铁氧体加聚氨酯泡沫尖劈吸波材料组成的复合材料,铁氧体用于1GHz以下,最佳在500MHz以下;聚氨酯泡沫尖劈吸波材料通常适用于450MHz以上,耐高温、高场强。 为满足30MHz~18GHz的归一化场地衰减要求,通常暗室需采用铁氧体片与渗碳泡沫角锥或空心角锥复合型的宽带吸波材料。根据文献报道,对于10m法暗室,为满足归一化场地衰减偏差≤±4dB要求,吸波材料在30~1000MHz垂直入射时反射系数应小于-20dB,45°入射角时小于-15dB。对于1~40GHz 频率范围,吸波材料垂直入射及45°角入射的反射系数也应不高于上述数值。 关于复合型宽带吸波材料,要注意以下两点: a)与铁氧体片组合的渗碳聚氨酯泡沫角锥,其含碳量不同于单独使用的角锥,对于这点,国内在早期研制复合型吸波材料时并不清楚,而是沿用常规的角锥吸波材料的含碳量配方。 b)复合型吸波材料与屏蔽室之间宜加一层胶合板。根据国外文献报道,增加这层电介质(胶合板)对改善反射系数是有益的。 EMC暗室与微波暗室的区别 没有下面的铁氧体和胶合板的暗室一般是用来测试天线的微波暗室,这个EMC暗室不一样,EMC 暗室必须要有铁氧体 1、EMC暗室模拟开阔场,也就是说五个面是没有任何障碍物,所以EMC暗室五个面要粘贴吸波材料,吸收电磁波,防止反射;而微波暗室是模拟自由空间,因此六个面都要粘贴吸波材料; 2、测试原理不一样,EMC测试接收能量是通过空间直射和地面反射叠加值,而微波暗室是直接发射接收到的值。 来源:电磁兼容之家

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习计划 福利任务
下载APP
联系我们
帮助与反馈