首页/文章/ 详情

RED-ACT |6月5日云南大理5.0级地震破坏力分析

1天前浏览17

Real-time Earthquake Damage Assessment using City-scale Time history analysis 

(RED-ACT)

致谢和声明:

       感谢中国地震台网中心为本研究提供数据支持。本分析仅供科研使用,具体灾情和灾损分析应根据现场调查情况确定。


一、地震情况简介

   据中国地震台网正式测定,6月5日4时31分在云南大理州洱源县发生5.0级地震,震源深度10公里,震中位于北纬26.26度,东经100.03度。。


二、强震记录及分析

      20250605云南大理5.0级地震获得了30组地震动,由于地震动没有完全收集,可能还有更强的记录。典型地震记录分析如下:

YN.LE001典型站位置北纬26.25度,东经99.98度,记录到水平向地震动峰值加速度为144.8 cm/s/s。该地震动及反应谱如图1、图2所示。  

(a) EW

 

(b) NS

 

(c) UD


图1 典型台站地面运动记录

 

图2  典型台站典型记录反应谱


三、地震动对典型城市区域破坏能力分析

根据新标准发布 :基于强震动记录的地震破坏力评估,利用密布强震台网在震后获取的实时地震动信息,再结合城市抗震弹塑性分析,就可以得到地震发生后不同地点的建筑破坏情况,为抗震救灾决策提供科学支撑。图3为根据本次地震震中附近范围内台站记录分析得到的建筑震害分布示意图。图4为根据本次地震震中附近范围内台站记录分析得到的人员加速度感受分布示意图。

 

 
图3 不同台站地震记录破坏力分布图

(建筑抗震承载力取均值加一倍方差)


 
 

图4 不同台站地震记录人员加速度感受分布图

(建筑抗震承载力取均值加一倍方差)


四、台站附近地震滑坡分析

根据当地地形数据、岩性数据和实测地面运动记录,可以计算得到不同滑坡体饱和比例下的滑坡分布,如图5所示。其中,底图为当地坡度分布图,每个圆圈代表每个台站的计算结果,圆圈中的数字代表发生滑坡的临界坡度,台站附近坡度大于该数值的地方滑坡发生概率高。

 

(a)滑坡体饱和比例为 0%

 

(b)滑坡体饱和比例为50%

 

(c)滑坡体饱和比例为 90%

图5 不同台站附近地震滑坡分布


五、地震动对典型单体结构破坏能力分析

(1) 对典型多层框架结构破坏作用

模型1:三层框架结构(感谢中国建筑设计研究院王奇教授级高工提供模型)

       将典型台站记录输入立面布置如图6(a)所示的6度、7度和8度设防的典型三层钢筋混凝土框架结构,得到其层间位移角包络如图6(b)所示。

   
   

(a)立面布置示意图           (b)层间位移角

图6 典型三层钢筋混凝土框架结构


(2) 对典型砌体结构破坏作用

模型1:单层未设防砌体结构

       选取图7所示纪晓东等开展的单层未设防砌体结构振动台试验模型,输入典型台站记录,分析结果表明该结构将处于中度破坏状态。(纪晓东等,北京市既有农村住宅砖木结构加固前后振动台试验研究,建筑结构学报,2012,11,53-61.)

 

图7 单层三开间农村住宅砖木结构振动台试验


模型2:五层简易砌体结构

       选取图8所示朱伯龙等开展的五层简易砌体结构足尺试验模型,输入典型台站记录,分析结果表明该结构将处于轻微破坏状态。(朱伯龙等,上海五层砌块试验楼抗震能力分析,同济大学学报,1981,4,7-14.)

   
   

(a)平面图                        (b)剖面图

图8 五层简易砌体结构布置


(3) 对典型桥梁破坏作用

模型1:某80年代公路桥梁(感谢福州大学谷音教授提供模型)

       选取图9所示某80年代公路桥梁模型,输入典型台站记录,分析结果表明该结构将处于完好状态。

 

图9 某80年代公路桥梁模型


模型2:某特大桥引桥(感谢福州大学谷音教授提供模型)

       选取图10所示某特大桥引桥模型,输入典型台站记录,分析结果表明该结构将处于完好状态。

 

图10 某特大桥引桥模型

来源:陆新征课题组

ACT振动非线性化学建筑消防BIMOpensees材料科普数字孪生控制试验人工智能
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2025-06-12
最近编辑:1天前
地震那些事
博士 抗震防灾数值模拟仿真
获赞 82粉丝 65文章 601课程 0
点赞
收藏
作者推荐

AIstructure-Copilot-V0.3.4:多种算法融合、提供新算法尝新功能

0引言 随着研究的进展,AI设计的算法库越来越丰富,我们将多种算法相互融合,取长补短,在AIstructure-Copilot-V0.3.4版本实现了新的融合算法。同时,为了及时把最新最好的算法提供给用户,我们提供了新算法尝新功能。此外,我们也将前处理部分做了更加精细化的处理,可以使用户操作起来更加顺畅,欢迎大家试用。1新算法尝新功能每次软件升级到新的版本,都可能会引入新的缺陷。特别是对于AI这类发展很快的领域,如何在“算法快速迭代升级”和“性能稳定”取得平衡往往是比较困难的。为了解决这一难题,我们决定同时将稳定版和研发中的测试版的设计结果都提供给用户。这样喜欢稳定的用户还是可以继续使用稳定版的设计结果,喜欢尝新的用户可以看看测试版的设计结果。也欢迎大家及时将发现的测试版的问题反馈给我们。这样我们可以及时调整AI算法。待测试版的算法稳定后,我们将移植测试版的结果到新的稳定版里面。 图1 新增测试版设计结果,第一组为测试版设计结果,第二到四组为稳定版设计结果2算法深度融合,AI设计能力更强大2023年11月以来,AIstructure-Copilot采用生成对抗网络、图神经网络、扩散模型等不同的AI算法进行结构智能设计,可以给出不同的设计方案供用户选择。随着研究的深入,我们算法库里面的算法越来越多,我们综合考虑设计的效果和结果的多样性,将不同算法融合成3套算法,分别生成相应的设计结果供用户选用。3前处理功能持续提升3.1 部分墙体、轴线提取能力提升针对一些复杂图纸,之前的版本对部分轴线和墙体的识别能力不足,需要用户后期手动进行修改调整,AIstructure-Copilot-V0.3.4版本对此进行了升级优化,如图2和图3所示,新的版本识别能力显著增强。 (a)升级优化前 (b)升级优化后图2 复杂图纸部分墙体的提取 (a)升级优化前 (b)升级优化后图3 复杂图纸部分窗轴线的提取3.2 管道井附近墙体提取能力提升在部分隔墙与建筑墙出现偏移时,旧版本在管道井部分会出现构件轴线提取异常的情况,AIstructure-Copilot-V0.3.4版本对此进行了优化处理,如图4所示。 (a)升级优化前 (b)升级优化后图4 管道井部分的构件处理4结语AIstructure-Copilot发展至今,算法不断进化,操作也更加便捷,带给用户更好的使用体验,可以更好的辅助工程师开展工作,欢迎大家试用。这里有彩蛋哦!随着住建部好房子标准的公布,我们的工程师也在加紧对AI进行新标准设计的训练,敬请期待!后续,我们还将不断完善相关产品功能。欢迎大家持续关注我们的工作,多多支持!温馨提示:为更好使用AI设计工具,请仔细阅读使用说明书(https://ai-structure.com)。--End--相关论文Liao WJ, Lu XZ, Huang YL, Zheng Z, Lin YQ, Automated structural design of shear wall residential buildings using generative adversarial networks, Automation in Construction, 2021, 132: 103931. DOI: 10.1016/j.autcon.2021.103931.Lu XZ, Liao WJ, Zhang Y, Huang YL, Intelligent structural design of shear wall residence using physics-enhanced generative adversarial networks, Earthquake Engineering & Structural Dynamics, 2022, 51(7): 1657-1676. DOI: 10.1002/eqe.3632.Zhao PJ, Liao WJ, Xue HJ, Lu XZ, Intelligent design method for beam and slab of shear wall structure based on deep learning, Journal of Building Engineering, 2022, 57: 104838. DOI: 10.1016/j.jobe.2022.104838.Liao WJ, Huang YL, Zheng Z, Lu XZ, Intelligent generative structural design method for shear-wall building based on “fused-text-image-to-image” generative adversarial networks, Expert Systems with Applications, 2022, 118530, DOI: 10.1016/j.eswa.2022.118530.Fei YF, Liao WJ, Zhang S, Yin PF, Han B, Zhao PJ, Chen XY, Lu XZ, Integrated schematic design method for shear wall structures: a practical application of generative adversarial networks, Buildings, 2022, 12(9): 1295. DOI: 10.3390/buildings1209129.Fei YF, Liao WJ, Huang YL, Lu XZ, Knowledge-enhanced generative adversarial networks for schematic design of framed tube structures, Automation in Construction, 2022, 144: 104619. DOI: 10.1016/j.autcon.2022.104619.Zhao PJ, Liao WJ, Huang YL, Lu XZ, Intelligent design of shear wall layout based on attention-enhanced generative adversarial network, Engineering Structures, 2023, 274: 115170. DOI: 10.1016/j.engstruct.2022.115170.Zhao PJ, Liao WJ, Huang YL, Lu XZ, Intelligent beam layout design for frame structure based on graph neural networks, Journal of Building Engineering, 2023, 63, Part A: 105499. DOI: 10.1016/j.jobe.2022.105499.Zhao PJ, Liao WJ, Huang YL, Lu XZ, Intelligent design of shear wall layout based on graph neural networks, Advanced Engineering Informatics, 2023, 55:101886, DOI: 10.1016/j.aei.2023.101886Liao WJ, Wang XY, Fei YF, Huang YL, Xie LL, Lu XZ, Base-isolation design of shear wall structures using physics-rule-co-guided self-supervised generative adversarial networks, Earthquake Engineering & Structural Dynamics, 2023, 52(11): 3281-3303. DOI:10.1002/eqe.3862.Feng YT, Fei YF, Lin YQ, Liao WJ, Lu XZ, Intelligent generative design for shear wall cross-sectional size using rule-embedded generative adversarial network, Journal of Structural Engineering-ASCE, 2023, 149(11). 04023161. DOI:10.1061/JSENDH.STENG-12206.Fei YF, Liao WJ, Lu XZ, Guan H, Knowledge-enhanced graph neural networks for construction material quantity estimation of reinforced concrete buildings, Computer-Aided Civil and Infrastructure Engineering, 2024, 39(4): 518-538. DOI: 10.1111/mice.13094.Zhao PJ, Fei YF, Huang YL, Feng YT, Liao WJ, Lu XZ, Design-condition-informed shear wall layout design based on graph neural networks, Advanced Engineering Informatics, 2023, 58: 102190. DOI: 10.1016/j.aei.2023.102190.Fei YF, Liao WJ, Lu XZ, Taciroglu E, Guan H, Semi-supervised learning method incorporating structural optimization for shear-wall structure design using small and long-tailed datasets, Journal of Building Engineering, 2023, 79: 107873. DOI:10.1016/j.jobe.2023.107873Liao WJ, Lu XZ, Fei YF, Gu Y, Huang YL, Generative AI design for building structures, Automation in Construction, 2024, 157: 105187. DOI: 10.1016/j.autcon.2023.105187Zhao PJ, Liao WJ, Huang YL, Lu XZ, Beam layout design of shear wall structures based on graph neural networks, Automation in Construction, 2024, 158: 105223. DOI: 10.1016/j.autcon.2023.105223Qin SZ, Liao WJ, Huang SN, Hu KG, Tan Z, Gao Y, Lu XZ, AIstructure-Copilot: assistant for generative AI-driven intelligent design of building structures, Smart Construction, 2024, DOI: 10.55092/sc20240001Gu Y, Huang YL, Liao WJ, Lu XZ, Intelligent design of shear wall layout based on diffusion models, Computer-Aided Civil and Infrastructure Engineering, 2024, 39(23):3610-3625. DOI: 10.1111/mice.13236Fei YF, Liao WJ, Zhao PJ, Lu X*, Guan H, Hybrid surrogate model combining physics and data for seismic drift estimation of shear-wall structures, Earthquake Engineering & Structural Dynamics, 2024, 53(10): 3093-3112. DOI: 10.1002/eqe.4151Han J, Lu XZ, Gu Y, Cai Q, Xue HJ, Liao WJ, Optimized data representation and understanding method for the intelligent design of shear wall structures, Engineering Structures, 2024, 315: 118500. DOI: 10.1016/j.engstruct.2024.118500Qin SZ, Guan H, Liao WJ, Gu Y, Zheng Z, Xue HJ, Lu XZ, Intelligent design and optimization system for shear wall structures based on large language models and generative artificial intelligence, Journal of Building Engineering, 2024, 95: 109996. DOI: 10.1016/j.jobe.2024.109996Wang ZH, Yue Y, Chen Y, Liao WJ, Li CS, Hu KG, Tan Z, Lu XZ. Expert experience-embedded evaluation and decision-making method for intelligent design of shear wall structures. Journal of Computing in Civil Engineering-ASCE, 2025, 39(1). DOI: 10.1061/JCCEE5.CPENG-6076Tan Z, Qin SZ, Hu KG, Liao WJ, Gao Y, Lu XZ, Intelligent generation and optimization method for the retrofit design of RC frame structures using buckling-restrained braces, Earthquake Engineering & Structural Dynamics, 2025, 54(2): 530-547. DOI: 10.1002/eqe.4268Yu Y, Chen Y, Liao WJ, Wang ZH, Zhang SL, Kang YJ, Lu XZ, Intelligent generation and interpretability analysis of shear wall structure design by learning from multidimensional to high-dimensional features, Engineering Structures, 2025, 325: 119472. DOI: 10.1016/j.engstruct.2024.119472Qin SZ, Liao WJ, Huang YL, Zhang Shulu, Gu Y, Han J, Lu XZ, Intelligent design for component size generation in reinforced concrete frame structures using heterogeneous graph neural networks, Automation in Construction, 2025, 171: 105967. Xia JK, Liao WJ, Han B, Zhang SL, Lu XZ, Intelligent co-design of shear wall and beam layouts using a graph neural network, Automation in Construction, 2025, 172: 106024. 来源:陆新征课题组

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习计划 福利任务
下载APP
联系我们
帮助与反馈