近年来,深度学习技术在多个工程领域取得了显著突破,特别是在疲劳与断裂分析中的应用。传统的疲劳分析方法依赖于物理模型和实验数据,然而,随着结构复杂性的增加和多物理场交互的挑战,传统方法的计算成本和准确性已无法满足高精度要求。深度学习通过强大的数据处理和模式识别能力,能够有效地从大量复杂数据中提取特征,进而提供更高效、更精准的分析。特别是在疲劳寿命预测、裂纹检测与扩展、以及多物理场耦合分析等方面,深度学习展现了巨大的潜力,能够弥补传统方法的不足,提升工程分析的效率与可靠性。
材料力学的传统分析方法在面对多维度、多物理场的复杂问题时,往往需要大量的实验数据支持,并且计算过程繁琐。而人工智能,特别是深度学习的应用,正在推动材料科学领域的革命。通过将物理学定律与深度学习模型结合,如物理信息神经网络(PINN),工程师可以实现更为精确的疲劳与断裂分析。AI技术的引入,不仅使得传统的疲劳与断裂分析方法更为高效,而且能够自动处理非结构化数据,如图像、传感器数据等,打破了传统方法的限制,提升了预测的精度和应用的广泛性。
随着航空航天、风电、桥梁等关键基础设施领域对安全性和可靠性要求的提高,在工程实践中的前沿趋势与挑战方面,深度学习在疲劳与断裂分析中的应用正日益重要。在这些领域,传统的疲劳分析方法面临着复杂负载谱、材料不均匀性和裂纹扩展行为等多方面的挑战,急需更高效、更智能的解决方案。深度学习,尤其是卷积神经网络(CNN)和生成对抗网络(GAN)的引入,为实时监测、裂纹扩展预测和疲劳寿命评估提供了新的方向。未来,结合深度学习与传统方法的混合分析模型,将在智能化、自动化的工程决策过程中扮演越来越重要的角色,推动结构安全与维护管理向更高水平发展。
课程一:人工智能助力高性能材料疲劳与断裂(课表上下滑动查看)
本课程旨在为学员提供深度学习驱动的疲劳与断裂分析的深入知识,结合材料力学、断裂力学以及深度学习技术,帮助学员理解如何将深度学习应用于工程中的疲劳与断裂问题。课程内容涵盖了深度学习基础、疲劳与断裂力学基础理论、疲劳裂纹扩展与断裂分析、以及深度学习在航空、新能源领域等工程中的应用。课程通过理论讲解、实际操作与案例分析相结合的方式,深入探讨了疲劳寿命预测、裂纹检测、损伤识别等技术,并结合实际工程问题,展示了深度学习在不同领域中的应用。
课程的前两天将聚焦于深度学习和疲劳断裂分析的基础理论,介绍深度学习的基本概念、神经网络架构及其在疲劳与断裂分析中的应用,帮助学员建立深度学习的理论框架,并通过Python编程实现疲劳寿命预测模型。第三天的课程将重点探讨疲劳与断裂分析在航空与新能源工程中的实际应用,包括裂纹扩展、疲劳寿命预测等问题,展示深度学习如何提升分析精度和效率。第四天将通过讲解腐蚀疲劳和复合材料寿命预测的基本理论及应用,探讨材料在恶劣环境下的疲劳行为,并利用深度学习方法优化分析过程。最后一天,课程将通过实际案例和操作,帮助学员掌握深度学习驱动的疲劳与断裂分析技术,能够在不同工程背景下灵活应用。同时,课程将介绍DeepSeek技术,展示如何利用其智能分析工具,进一步提高疲劳与断裂问题的诊断精度和处理速度。通过这项技术,学员将了解如何在复杂工程环境中进行高效的数据分析和预测。
本课程的教学目标是通过理论讲解与实践操作,帮助学员全面掌握深度学习在疲劳与断裂分析中的应用,并将所学知识有效应用于工程实践中。首先,学员将深入理解深度学习的基本原理和常见算法,掌握神经网络、卷积神经网络等模型的应用,能够在疲劳与断裂分析中灵活运用深度学习方法。其次,学员将掌握疲劳与断裂力学的基本理论,理解疲劳裂纹扩展、断裂韧性、疲劳寿命预测等关键内容,并能够结合深度学习技术,提升分析的精度和效率。课程还将培养学员进行智能裂纹检测与寿命预测的能力,学员将能够利用深度学习进行裂纹分类与检测,预测疲劳寿命,并通过实际案例进行应用,提升数据驱动的分析能力。此外,学员将在实际工程应用中,运用深度学习方法解决航空结构、风电装备、桥梁等领域的疲劳与断裂问题,提高分析效率与精度。最后,通过编程实践,学员将能够利用Python和深度学习框架(如PyTorch)构建与训练疲劳与断裂分析模型,完成疲劳寿命预测、裂纹检测等任务,掌握深度学习驱动的端到端分析方法,同时掌握如何将DeepSeek技术与传统分析方法相结合,以实现更高效、更精准的疲劳与断裂分析。
本课程的主讲老师来自国内985重点高校,拥有两年海外留学经历,并专注于计算物理与计算材料的研究。老师的学术背景深厚,长期从事复合材料计算与深度学习方法的结合研究,涉及的研究领域包括量子力学、材料科学、仿真技术、人工智能技术等。作为学术团队的一员,老师参与了多项国家自然科学基金面上项目,在国际学术界具有广泛的影响力。老师的研究方向主要集中在深度学习方法应用于第一性原理计算的领域,尤其是在神经网络势函数(NNF)和分子动力学模拟(MD)等领域取得了突破性的成果。凭借扎实的理论功底和丰富的实践经验,老师在如何高效地结合深度学习与材料科学进行分析应用,研究成果被广泛应用于材料设计、能源催化、电子结构计算等多个领域。老师在国际顶级期刊上发表多篇高水平论文,这些论文涉及计算材料、量子力学、机器学习与材料科学的交叉领域,得到了国内外学术界的广泛认可和引用。除此之外,老师还参与了多项学术交流活动,并在多个国际学术会议上做过专题报告,积累了丰富的学术交流和研究合作经验。在教学方面,老师秉承“理论与实践并重”的教学理念,注重将深奥的理论知识与实际应用紧密结合。在本次培训课程中,老师将通过系统的讲解和丰富的实操案例,帮助学员深入理解深度学习方法如何在复合材料中使用,从基础的量子力学原理、密度泛函理论(DFT)到神经网络势函数的应用,再到如何用机器学习方法加速材料模拟,课程内容涉及面广,理论深度与实践操作并行,旨在让学员能够全面掌握并运用相关技术。除了学术与教学的成就,老师在编程与软件工具方面也有着丰富的经验,能够灵活运用Python、Pytorch等编程工具进行大规模计算与数据分析。老师的多项研究成果和编程经验为学员提供了一个独特的学习平台,使得课程内容更加贴近实际需求,帮助学员快速掌握从理论到实践的核心技术。
物理信息神经网络(PINN)的兴起近年来,物理信息神经网络(Physics-Informed Neural Networks, PINN)成为计算科学与人工智能交叉领域的前沿方向。传统数值方法(如有限差分法、有限单元法)在高维、强非线性或反演问题中面临计算效率低、网格依赖性强等瓶颈。PINN通过将控制方程、边界条件等物理先验嵌入神经网络,以无网格方式实现微分方程求解,在流体力学、固体力学、传热学等领域展现出突破性潜力。其核心论文(引用超13,000次)开创了物理驱动深度学习的范式,成为Nature、CMAME等顶刊的研究热点。2. 传统数值方法与机器学习的融合需求有限差分法(FDM)和有限单元法(FEM)虽成熟但依赖离散化,难以处理复杂几何与多物理场耦合问题。机器学习(如CNN、GNN)虽具备强大的数据拟合能力,但缺乏物理可解释性。PINN通过融合物理定律与数据驱动,显著减少训练数据需求,提升泛化性能,并在参数反演、方程发现等逆问题中展现独特优势。此外,深度能量法(DEM)等变体进一步结合能量变分原理,为固体力学问题提供高效解决方案。3. 大模型赋能科学计算的新机遇以DeepSeek、ChatGPT为代表的大模型技术,正在颠覆传统科学编程模式。通过自然语言交互生成PINN代码,可加速复杂瞬态问题的求解流程。本课程结合大模型辅助编程,探索其在微分方程求解、代码调试及多任务优化中的应用,推动“AI for Science”的工程化落地。
讲师曾在香港和美国工作和学习,具有计算机和经典数值方法的双重教育背景,在中科院一区Top等计算力学顶刊CMAME以一作发表二十篇SCI论文,包括多篇PINN和传统数值主题的顶刊论文。
学习前沿固体力学多物理场耦合问题,训练深度学习在固体力学中的应用。破解难题,引领科研新范式。
图表 1物理信息神经网络示意图 (Karniadakis et al., 2021)
固体力学及其多物理场问题主要研究固体类材料在外界力场或者其他物理场作用下发生的变形。相关理论和方法广泛应用于工程、材料科学、机械设计、建筑结构等领域。尽管偏微分方程 (Partial Differential Equations, PDEs) 数值离散化在模拟多物理场耦合中取得了巨大进展,但是网格生复杂、方程包含非线性行为、含噪声数据难以整合到逆问题等困难依然突出。作为另一种研究范式,机器学习 (Machine Learning),特别是深度学习 (Deep Learning),在固体力学领域展现出了巨大潜力。神经网络作为替代模型已经证实可以用于解决超弹性等问题。更进一步,由于有监督学习需要大量数据来使得模型“见多识广”,无监督学习的物理信息神经网络可以通过添加物理定律约束来缩小解空间范围,为正逆问题带来了的更多的可能性。总而言之,深度学习可为传统固体力学领域“老树开新花”。
以问题为导向,提升解决问题的能力培养批判性思维,提供从0到1的路径自我修正能力
1.培养从0到1建模能力:课程注重学科基础能力和科学建模方案。在线弹性基础上进一步扩展到多物理场耦合问题,学习多场耦合问题的新提法以及控制方程的构建。课程对实际现象进行简化处理,提取主要矛盾后建立控制方程,并通过无量纲化减少系统参数,精准揭示现象的演化规律和主导因素。从神经网络底层,着重学习神经网络基本原理。课程注重培养问题从0到1的建模过程,对比经典解法和深度学习解法,探究深度学习在固体力学和多物理场仿真中的前景和局限。
2.培养学科交叉能力:课程旨在培养既精通固体力学学基本提法与多物理场仿真基础方案,又熟练掌握机器学习算法与深度学习技术的复合型人才。学员将深入固体力学和多物理场仿真的时空动态规律,同时精通神经网络、优化算法等关键技术,能够创新性地设计并实施多物理场模型,优化预测精度与效率。
3.展现机器学习优势:通过对比分析,课程将深刻揭示机器学习在多物理场偏微分方程中相较于传统模型的显著优势,包括更强的解拟合能力、更高效的数据处理速度以及更广阔的适用场景。探讨其在应力应变估算、结构设计评估、参数反演策略优化等方面的最新研究进展与广阔应用前景。
4.实战案例分析:通过深入分析机器学习在稳态和瞬态的固体力学和多物理场仿真等预测中的具体应用案例,如质量阻尼弹簧的位移预测,超弹性材料本构模型,相场法断裂深度学习算法,学员可以直观感受其在实际问题解决中深度学习的强大威力与显著成效。这些案例将帮助学员构建理论与实践之间的桥梁,提升解决实际问题的能力。
5.追踪领域前沿动态:课程将引入国际上的知名期刊和团队的最新研究成果,详细介绍机器学习在固体力学和多物理场仿真领域的最新发展态势,包括新型算法的研发、大规模数据集的应用、以及跨学科合作的新模式。旨在激发学员的创新灵感,鼓励他们探索新技术、新方法,推动固体力学和多物理场仿真往更加智能化、自动化、精准化的方向发展。
6.拓宽国际视野,促进跨学科合作:拓宽学员的国际视野,促进他们与国际同行的交流与合作。同时,强调跨学科整合的重要性,鼓励学员在固体力学、机器学习、数据科学等领域之间寻找交叉点,开展创新性研究,为解决全球固体力学建模的挑战贡献智慧与力量。
主讲老师来自全球排名前20高校,本科毕业于国内顶尖985院校。擅长固体力学以及多物理场耦合问题,对深度学习有丰富经验,常用深度学习解决固体力学和多物理场仿真等问题。近年来发表子刊、SCI论文多篇。研究方向包括:力电耦合,力磁耦合,力化学耦合问题。深度学习方面研究方向包括神经网络 (NN)、循环神经网络 (RNN)、图像目标识别 (Image recognition)、物理信息神经网络 (Physics-informed neural networks)、深度Ritz法等。
从流体力学基础,流体力学仿真基础以及流体力学&深度学习基础,层层递进,深入浅出,最终从代码层级一站式打通从流体力学理论到问题解决的整个流程。本课程注重学科基础和数值建模框架,不仅提供代码上的实操支持,而且从物理层面给出仿真结果的物理解释,适合初学者进阶。课程结合前沿论文,讲解论文论述框架,瞄准当下热点难点。最后,依托所课程内容,提供该主题下论文结构性和系统性撰写方式。
图表 1 机器学习在流体力学中的应用
深度学习与流体力学的学科交叉正不断扩展科研的边界。在工业领域,例如航天航空、海洋船舶和能源动力等行业,存在许多亟待解决的流体控制与优化设计难题。流体力学问题的主要特点包括高维度、强非线性和数据量大。近年来,深度学习技术因其数据驱动的特性和处理高维复杂问题的能力,已在流体力学领域取得了一定的应用,而且获了主流期刊比如《Nature》和《Science》杂志的认可。
传统的流体力学模拟方法在应对高耦合度和非线性问题时面临诸多限制,而深度学习技术为流体力学提供了新的思路和方法。这主要集中在:基于流体力学控制方程的辅助求解,流场重构等正问题;控制方程系数等特征量提取等逆问题。通过结构化的神经网络支起完备的解空间,这一技术可以根据外部实验测量数据、物理控制方程、初边界条件等辅助信息寻找问题准确的解函数。同时,不同的神经网络结构提供了更为广阔的灵活性以及功能性,为解决复杂流动问题提供了创新的解决方案,提升了流体动力学仿真的精度与效率,推动了流场优化和控制,以及对复杂流动现象的深入理解。
培养流体力学和深度学习的建模能力
l课程注重学科基础和科学建模方案,涵盖多物理场耦合问题和控制方程构建,以及问题简化的物理依据。结合控制方程,将问题从复杂到简单,最终在CAE训练中感受如何抓住主要矛盾,精简问题结论;
l课程注重深度学习基础理论,培养从0到1的神经网络建模过程,从原理上理解神经网络,从代码上实现神经网络;
l学习深度学习在流体力学中的应用,比较经典解法和深度学习解法。培养精通流体力学与深度学习的复合型人才,为解决流体力学问题提供另一种范式。
理论与实践并重
l从工程师培养的角度,培养简化问题的能力;
l简化软件上手难度,定位软件或代码为服务于问题的工具;
l手把手教学CFD建模,使用如COMSOL Multiphysics,Ansys Fluent,OpenFOAM 等建模软件,并同步展示控制方程,理解操作的底层逻辑。
追踪前沿动态
l分析国际团队最新研究成果,以探索深度学习在流体力学中的发展趋势;
l拓展学员拥有国际视野,加强与国际同行的交流合作;
l积极鼓励学员在流体力学与深度学习间寻找创新交叉点,跟踪前沿研究。
该位主讲老师来自于国内985高校实验室,毕业于国内顶尖的985工程院校和海外名校,和多个公司有深度学习流体力学横向项目上的合作。纵向方面,专业领域涵盖流体力学和多物理场流场耦合问题。老师拥有丰富的仿真经验和培训经验,熟练使用如COMSOL Multiphysics,Ansys Fluent,OpenFOAM 等建模软件。老师在该领域同样拥有多年研究经验,发表子刊、SCI论文多篇。擅长深度学习建模研究,流体力学中的深度学习方法,数据驱动的计算力学,有限元方法,有限差分法,有限体积法,CFD,并广泛应用于解决流体力学和多物理场仿真挑战中。在深度学习方面,研究重点包括长短记忆神经网络 (LSTM)、卷积神经网络 (CNN),以及物理信息神经网络 (Physics-informed neural networks)等。
深度学习助力高性能材料疲劳分析与断裂应用研究
深度学习PINN与大模型编程授课时间:
2025.6.14-----2025.6.15全天授课(上午9:00-11:30下午13:30-17:00)
2025.6.16-----2025.6.19晚上授课(晚上19:00-22:00)
2025.6.23-----2025.6.24晚上授课(晚上19:00-22:00)
腾讯会议 线上授课(共五天授课时间 提供全程回放视频)深度学习固体力学:
2025.7.08-----2025.7.10晚上授课(晚上19:00-22:00)
2025.7.12-----2025.7.13全天授课(上午9:00-11:30下午13:30-17:00)
2025.7.15-----2025.7.17晚上授课(晚上19:00-22:00)
腾讯会议 线上授课(共五天授课时间 提供全程回放视频)人工智能助力高性能材料疲劳与断裂/深度学习PINN+大模型辅助编程/深度学习固体力学/深度学习流体力学
费用:每人每班¥4980元 (含报名费、培训费、资料费)
优惠政策
优惠一: 两门同报9080元
优惠二:三门同报12800元
优惠三:四门同报15800元
优惠四:提前报名缴费学员+转发到朋友圈或者到学术交流群可享受每人300元优惠(仅限15名)
报名费用可开具正规报销发票及提供相关缴费证明、邀请函,可提前开具报销发票、文件用于报销
课后学习完毕提供全程录像视频回放,针对与培训课程内容 进行长期答疑,微 信 解疑群永不解散,参加本次课程的学员可免费再参加一次本单位后期组织的相同的 专题培训班(任意一期都可以)
培训答疑与互动
在培训中进行答疑和问题互动,以帮助学员深入理解课程内容和解决实际问题。
学员可以提出疑问,讲师将提供详细解答,特别是针对技术难点和复杂算法。
通过小组讨论和案例分享,学员将有机会交流经验,获得实时反馈,并进行实践操作演示。
展示学员的学习成果,并提供进一步的提升建议和资源支持,为学员在未来的学习和工作中提供帮助和指导。
授课方式:通过腾讯会议线上直播,从零基础开始讲解,电子PPT和教程+预习视频提前发送给学员,所有培训使用软件都会发送给学员,附赠安装教程和指导安装,培训采取开麦共享屏幕和微 信群解疑,学员和老师交流、学员与学员交流,培训完毕后老师针对与培训内容长期解疑,培训群不解散,往期培训学员对于培训质量和授课方式一致评价极高
来源:水木人CAE