1880年喷嘴第一次在喷雾燃烧中得以应用,到19世纪末,喷嘴开始在不同领域得到了广泛应用。近百年来,研究最多、使用最广的喷嘴主要有三大类:直射式喷嘴、离心式喷嘴和空气雾化喷嘴。喷嘴的类型虽然各不相同,但其雾化过程是基本相似的,要使液体雾化,必须先使液体碎裂为很细的射流或很薄的液膜,然后再将射流或液膜碎裂成粒径很小的液滴群。
1、喷嘴的雾化机理与雾化过程
从本质上来说,液体的雾化就是液体所受到的外力(如液体压力、空气剪切力等)与液体自身的粘滞力及表面张力彼此博弈的过程,液体的表面张力试图使液体保持球形,液体的粘性则阻碍液体的变形,当促进液体破碎的外力足以克服阻碍液体破碎的表面张力和粘滞力时,液体就会破碎成为许多小液滴。这些初步破碎的小液滴十分脆弱,在附近空气的作用下,会再次破碎,形成粒度更小的雾粒,实现二次雾化。
2、雾化仿真方法与工程雾化模型
液体的雾化以液体体积大小为标准主要可分为液柱区、液团区和液滴区三个区域。液柱由于受到空气动力的相互作用及表面张力等影响会转化液团,最后转化成非常细小的液滴,从而增加液体与空气之间的接触面积,有助于后续的空气夹带和蒸发过程。根据湍流和空气动力对雾化的作用,可以将雾化分为一次雾化和二次雾化。
图2‑6 空心锥形旋流喷雾过程的剖面图:
积鼎自研CFD软件VirtualFlow,具备高精度的雾化解决方案以及丰富的工程雾化模型,可以模拟多种喷雾场景,有效降低实验成本和缩短雾化相关产品的研发周期。
1
2
参考文献
[1] 王雄辉. 横向气流中液体圆柱射流的破碎特性和表面波现象[J]. 2012:
[2] 费立森,徐胜利,王昌建,李强,黄生洪. 高速冷态气流中煤油雾化现象的实验研究[J]. 中国科学(E 辑:技术科学), 2008, 38(1): 7.
[3] Sallam K A, Aalburg C, and Faeth G M. Breakup of round nonturbulent liquid jets in gaseous crossflow[J]. Aiaa Journal, 2004, 42(12): 2529-2540.
[4] Sankarakrishnan R. Breakup of turbulent round liquid jets in uniform gaseous crossflow[D]. India: Engineering in Mechanical Engineering University of Madras Chennai, 2003.
[5] Wu P K, Kirkendall K A, Fuller R P, and Nejad A S. Breakup Processes of Liquid Jets in Subsonic Crossflows[J]. Journal of Propulsion and Power, 1997, 13(1): 9.
[6] 吴里银.超声速气流中液体横向射流破碎与雾化机理研究[D].长沙:国防科学技术大学研究生院,2016.
[7] Ménard,Thibault,Sebastien Tanguy,and Alain Berlemont."Coupling level set/VOF/ghost fluid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet." International Journal of Multiphase Flow 33.5 (2007): 510-524.
[8] Lebas, Romain, et al. "Numerical simulation of primary break-up and atomization: DNS and modelling study." International Journal of Multiphase Flow 35.3 (2009): 247-260.
[9] Ding, Jia-Wei, et al. "Numerical Investigation on Primary Atomization Mechanism of Hollow Cone Swirling Sprays." International Journal of Rotating Machinery 2016 (2016).
[10] Faeth G M. Liquid atomization in multiphase flows: a review [J].AIAA-1999-3639, 1999
[11] Adelberg M. Breakup rate and penetration of a liquid jet in a gas stream [J].AIAA Journal, 1967, 5 (8):1408-1415
[12] Lord Rayleigh. On the instability of jets[J].Proc.London Math.Soc., 1878.
[13] Weber C. Disintegration of liquid jets[J]. Z.Angew.Math.Mech., 1931, 11(2):136-159.
[14] Keller Jb, Rubinow Si, Tu Yo. Spatial instability of a jet[J].Phys Fluids 1973, Vol.16(12):2052-2055.
[15] G. I. Taylor. The Dynamics of Thin Sheets of Fluid. II Waves on Fluid Sheets[J]. Proc. R. Soc, 1959,
[16] G. I. Taylor. The Dynamics of Thin Sheets of Fluid. III Disintegration of Fluid Sheets[J]. Proc. R. Soc, 1959,
[17] W.Ohnesorge. Formation of drops by nozzles and the breakup of liquid jets[J]. Z.Angew.Math.Mech., 1936, 16:355-358.
[18] R.D.Reitz. Atomization and other breakup tegimes of a liquid jet[D]. Princeton Universtity, 1978.
[19] G.M.Faeth. Structure and atomization properties of dense turbulent sprays[C].23th Symposium (International) on Combustion/The Combustion Institute 1990.
[20] Fraser R P. Liquid fuel atomization [C].Sixth Symposium on Combustion, 1957.
[21] Norman Dombrowski, David Hasson. The flow characteristics of swirl spray pressure nozzles with low viscosity liquids[J]. AICHE Journal 1969, 15(4):604-611.
[22] 岳明. 锥形液膜初始破碎雾化过程和机理研究[D]. 北京: 北京航空航天大学研究生院, 2003.
[23] 李冬青. 气力式喷嘴雾化过程的实验研究与数值模拟[D]. 浙江大学机械与能源工程学院, 2007.
[24] J.L.Santolaya, L.A.Aisa, E.Garcia. Experimental study of near field flow structure in hollow cone pressure swirl sprays[J]. Journal of Propulsion and Power, 2007, 23(2):382-389.
[25] K. U. Reddy, D. P. Mishra. Studies on Spray Behavior of a Pressure Swirl Atomizer in Transition Regime[J]. Journal of Propulsion and Power, 2008, 24 (1)
[26] Crighton D G, Gaster M. Stability of slowly divering jet flow [J]. J.Fluid Mech, 1976, 77:397.
[27] P. Plaschko. Helical instability of slowly divergent jets[J]. J. Fluid Mech, 1972, 92:209.
[28] Xia N, Yin X Y. Stability analysis of slowly divergent swirling flow(I)-theory[J]. Applied Math.Mech, 1995, 16(11):1047.
[29] Crapper G D, Dombrowski N, Pyot G a D. Kelvin-Helmholtz wave growth in cylindric sheets [J]. J. Fluid Mech, 1975, 168(3):497-502.
[30] David P. Schmidt, Idriss Nouar, Senecal P K. Pressure-swirl atomization in the near field[J]. 1999, 1999-01-0496
[31] 史绍熙, 林玉静, 杨延相. 影响空心旋转液体射流初始阶段运动的无量纲参数的分析[J]. 工程热物理学报, 2000, 21(4):505-509.
[32] 王中伟. 锥形液膜的 Kelvin-Helmholtz 扰动波[J]. 国防科技大学学报, 2008, 30(3):32-36.
[33] 李继保, 岳明, 杨茂林. 锥形液膜 Kelvin Helmholtz 波不稳定性的实验研究[J]. 航空动力学报, 2007, 22(3):337-341.
[34] 魏南.气液两相流喷嘴的射流雾化机理的研究[D].济南:山东建筑大学,2014.